
CHAPTER 5

Ladybug Chase

Games are among the most exciting mobile phone apps,
both to play and to create. The recent smash hit Angry
Birds was downloaded 50 million times in its first year
and is played more than a million hours every day,
according to Rovio, its developer. (There is even talk of
making it into a feature film!) While we can’t guarantee
that kind of success, we can help you create your own
games with App Inventor, including this one involving a
ladybug eating aphids while avoiding a frog.

What You’ll Build
With the Ladybug Chase app shown in Figure 5-1, the
user can:

• Control a ladybug by tilting the phone.

• View an energy-level bar on the screen, which
decreases over time, leading to the ladybug’s
starvation.

• Make the ladybug chase and eat aphids to gain
energy and prevent starvation.

• Help the ladybug avoid a frog that wants to eat it.

What You’ll Learn
You should work through the MoleMash app in Chapter 3 before delving into this
chapter, as it assumes you know about procedure creation, random-number genera-
tion, the ifelse block, and the ImageSprite, Canvas, Sound, and Clock components.

In addition to reviewing material from MoleMash and other previous chapters, this
chapter introduces:

Figure 5-1. The Ladybug Chase
game in the Designer

70  Chapter 5:  Ladybug Chase

• Using multiple ImageSprite components and detecting collisions between
them.

• Detecting phone tilts with an OrientationSensor component and using it to
control an ImageSprite.

• Changing the picture displayed for an ImageSprite.

• Drawing lines on a Canvas component.

• Controlling multiple events with a Clock component.

• Using variables to keep track of numbers (the ladybug’s energy level).

• Creating and using procedures with parameters.

• Using the and block.

Designing the Components
This application will have a Canvas that provides a playing field for three ImageSprite
components: one for the ladybug, one for the aphid, and one for the frog, which will
also require a Sound component for its “ribbit.” The OrientationSensor will be used
to measure the phone’s tilt to move the ladybug, and a Clock will be used to change
the aphid’s direction. There will be a second Canvas that displays the ladybug’s energy
level. A Reset button will restart the game if the ladybug starves or is eaten. Table 5-1
provides a complete list of the components in this app.

Table 5-1. All of the components for the Ladybug Chase game

Component type Palette group What you’ll name it Purpose

Canvas Basic FieldCanvas Playing field.

ImageSprite Animation Ladybug User-controlled player.

OrientationSensor Sensors OrientationSensor1 Detect the phone’s tilt to control the ladybug.

Clock Basic Clock1 Determines when to change the Image
Sprites’ headings

ImageSprite Animation Aphid The ladybug’s prey.

ImageSprite Animation Frog The ladybug’s predator.

Canvas Basic EnergyCanvas Display the ladybug’s energy level.

Button Basic RestartButton Restart the game.

Sound Media Sound1 “Ribbit” when the frog eats the ladybug.

Getting Started  71 

Getting Started
Download the images of the ladybug, aphid, and frog from the book’s website
(http://examples.oreilly.com/0636920016632/). You’ll also need to download the sound
file for the frog’s ribbit.

Connect to the App Inventor website and start a new project. Name it “LadybugChase”
and also set the screen’s title to “Ladybug Chase”. Open the Blocks Editor and connect
to the phone. Add the images you found or created, as well as the sound file, to the
Media panel.

If you will be using a phone, you’ll need to disable autorotation of the screen, which
changes the display direction when you turn the phone. On most phones, you do
this by going to the home screen, pressing the menu button, selecting Settings,
selecting Display, and unchecking the box labeled “Auto-rotate screen.”

Animating the Ladybug
In this “first-person chewer” game, the user will be represented by a ladybug, whose
movement will be controlled by the phone’s tilt. This brings the user into the game in
a different way from MoleMash, in which the user was outside the phone, reaching in.

Adding the Components
While previous chapters have had you create all the components at once, that’s not
how developers typically work. Instead, it’s more common to create one part of a
program at a time, test it, and then move on to the next part of the program. In this
section, we will create the ladybug and control its movement.

• Create a Canvas in the Component Designer, name it FieldCanvas, and set its
Width to “Fill parent” and its Height to 300 pixels.

• Place an ImageSprite on the Canvas, renaming it Ladybug and setting its
Picture property to the (live) ladybug image. Don’t worry about the values of
the X and Y properties, as those will depend on where on the canvas you placed
the ImageSprite.

As you may have noticed, ImageSprites also have Interval, Heading, and Speed
properties, which we will use in this program:

• The Interval property, which you can set to 10 (milliseconds) for this game,
specifies how often the ImageSprite should move itself (as opposed to being
moved by the MoveTo procedure, which you used for MoleMash).

http://examples.oreilly.com/0636920016632/

72  Chapter 5:  Ladybug Chase

• The Heading property indicates the direction in which the ImageSprite should
move, in degrees. For example, 0 means due right, 90 means straight up, 180
means due left, and so on. Leave the Heading as-is right now; we will change it
in the Blocks Editor.

• The Speed property specifies how many pixels the ImageSprite should move
whenever its Interval (10 milliseconds) passes. We will also set the Speed prop-
erty in the Blocks Editor.

For more details on image sprites, see Chapter 17.

The ladybug’s movement will be controlled by an OrientationSensor, which detects
how the phone is tilted. We want use the Clock component to check the phone’s
orientation every 10 milliseconds (100 times per second) and change the ladybug’s
Heading (direction) accordingly. We will set this up in the Blocks Editor as follows:

1. Add an OrientationSensor, which will appear in the “Non-visible components”
section.

2. Add a Clock, which will also appear in the “Non-visible components” section,
and set its TimerInterval to 10 milliseconds. Check what you’ve added against
Figure 5-2.

Adding the Behavior
Moving to the Blocks Editor, create the procedure UpdateLadybug and a Clock1
.Timer block, as shown in Figure 5-3. Try typing the names of some of the blocks
(such as “Clock1.Timer”) instead of dragging them out of the drawers. (Note that
the operation applied to the number 100 is multiplication, indicated by an aster-
isk, which may be hard to see in the figure.) You do not need to create the yellow
comment callouts, although you can by right-clicking a block and selecting Add
Comment.

The UpdateLadybug procedure makes use of two of the OrientationSensor’s most
useful properties:

• Angle, which indicates the direction in which the phone is tilted (in degrees).

• Magnitude, which indicates the amount of tilt, ranging from 0 (no tilt) to 1
(maximum tilt).

Multiplying the Magnitude by 100 tells the ladybug that it should move between
0 and 100 pixels in the specified Heading (direction) whenever its TimerInterval,
which you previously set to 10 milliseconds in the Component Designer, passes.

Although you can try this out on the connected phone, the ladybug’s movement
might be both slower and jerkier than if you package and download the app to the
phone. If, after doing that, you find the ladybug’s movement too sluggish, increase
the speed multiplier. If the ladybug seems too jerky, decrease it.

Animating the Ladybug  73 

Figure 5-2. Setting up the user interface in the Component Designer for animating the ladybug

Figure 5-3. Changing the ladybug’s heading and speed every 10 milliseconds

74  Chapter 5:  Ladybug Chase

Displaying the Energy Level
We will display the ladybug’s energy level with a red bar in a second canvas. The line
will be 1 pixel high, and its width will be the same number of pixels as the ladybug’s
energy, which ranges from 200 (well fed) to 0 (dead).

Adding a Component
In the Designer, create a new Canvas, placing it beneath FieldCanvas and naming it
EnergyCanvas. Set its Width property to “Fill parent” and its Height to 1 pixel.

Creating a Variable: Energy
In the Blocks Editor, you will need to create a variable energy with an initial value
of 200 to keep track of the ladybug’s energy level. (As you may recall, we first used a
variable, dotSize, in Chapter 2’s PaintPot app.) Here’s how to do it:

1. In the Blocks Editor, in the Built-In column, open the Definitions drawer. Drag out
a def variable block. Change the text “variable” to “energy”.

2. If there is a block in the socket on the right side of def energy, delete it by se-
lecting it and either pressing the Delete key or dragging it to the trash can.

3. Create a number 200 block (by either starting to type the number 200 or drag-
ging a number block out of the Math drawer) and plug it into def energy, as
shown in Figure 5-4.

Figure 5-4. Initializing the variable energy to 200

Figure 5-5 shows how creating the variable also added blocks to the My Definitions
drawer to set or get the value of energy.

Figure 5-5. View of the My Definitions drawer showing new global energy and set global energy blocks

Drawing the Energy Bar
We want to communicate the energy level with a red bar whose length in pixels is
the energy value. To do so, we could create two similar sets of blocks as follows:

Displaying the Energy Level  75 

1. Draw a red line from (0, 0) to (energy, 0) in FieldCanvas to show the current
energy level.

2. Draw a white line from (0, 0) to (EnergyCanvas.Width, 0) in FieldCanvas to
erase the current energy level before drawing the new level.

However, a better alternative is to create a procedure that can draw a line of any
length and of any color in FieldCanvas. To do this, we must specify two arguments,
length and color, when our procedure is called, just as we needed to specify
parameter values in MoleMash when we called the built-in random integer proce-
dure. Here are the steps for creating a DrawEnergyLine procedure, which is shown in
Figure 5-6.

1. Go to the Definition drawer and drag out a to procedure block.

2. Click its name (probably “procedure1”) and change it to “DrawEnergyLine”.

3. Go back to the Definition drawer and drag out a name block, snapping it into
the arg (short for argument) socket. Click its name and change it to “color”.

4. Repeat step 3 to add a second argument and name it “length”.

5. Fill in the rest of the procedure as shown in Figure 5-6. You can find the new
color and length blocks in the My Definitions drawer.

Figure 5-6. Defining the procedure DrawEnergyLine

Now that you’re getting the hang of creating your own procedures, let’s also write a
DisplayEnergyLevel procedure that calls DrawEnergyLine twice, once to erase the
old line (by drawing a white line all the way across the canvas) and once to display
the new line, as shown in Figure 5-7.

76  Chapter 5:  Ladybug Chase

Figure 5-7. Defining the procedure DisplayEnergyLevel

The DisplayEnergyLevel procedure consists of four lines that do the following:

1. Set the paint color to white.

2. Draw a line all the way across EnergyCanvas (which is only 1 pixel high).

3. Set the paint color to red.

4. Draw a line whose length in pixels is the same as the energy value.

Note. The process of replacing common code with calls to a new
procedure is called refactoring, a set of powerful techniques for
making programs more maintainable and reliable. In this case, if we
ever wanted to change the height or location of the energy line, we
would just have to make a single change to DrawEnergyLine, rather
than making changes to every call to it. For more information on
procedures, see Chapter 21.

Starvation
Unlike the apps in previous chapters, this game has a way to end: it’s over if the
ladybug fails to eat enough aphids or is eaten by the frog. In either of these cases, we
want the ladybug to stop moving (which we can do by setting Ladybug.Enabled to
false) and for the picture to change from a live ladybug to a dead one (which we can
do by changing Ladybug.Picture to the name of the appropriate uploaded image).
Create the GameOver procedure as shown in Figure 5-8.

Displaying the Energy Level  77 

Figure 5-8. Defining the procedure GameOver

Next, add the code outlined in red in Figure 5-9 to UpdateLadybug (which, as you
may recall, is called by Clock.Timer every 10 milliseconds) to:

• Decrement its energy level.

• Display the new level.

• End the game if energy is 0.

Test your app. You should be able to test this code on your phone
and verify that the energy level decreases over time, eventually caus-
ing the ladybug’s demise. If you want to restart the application, press
the “Connect to Device...” button in the Blocks Editor.

Figure 5-9. Second version of the procedure UpdateLadybug

78  Chapter 5:  Ladybug Chase

Adding an Aphid
The next step is to add an aphid. Specifically, an aphid should flit around FieldCanvas.
If the ladybug runs into the aphid (thereby “eating” it), the ladybug’s energy level
should increase and the aphid should disappear, to be replaced by another one a
little later. (From the user’s point of view, it will be a different aphid, but it will really
be the same ImageSprite component.)

Adding an ImageSprite
The first step to add an aphid is to go back to the Designer and create another
ImageSprite, being sure not to place it on top of the ladybug. It should be renamed
Aphid and its properties set as follows:

1. Set its Picture property to the aphid image file you uploaded.

2. Set its Interval property to 10, so, like the ladybug, it moves every 10
milliseconds.

3. Set its Speed to 2, so it doesn’t move too fast for the ladybug to catch it.

Don’t worry about its X and Y properties (as long as it’s not on top of the ladybug) or
its Heading property, which will be set in the Blocks Editor.

Controlling the Aphid
By experimenting, we found it worked best for the aphid to change directions
approximately once every 50 milliseconds (5 “ticks” of Clock1). One approach to
enabling this behavior would be to create a second clock with a TimerInterval of
50 milliseconds. However, we’d like you to try a different technique so you can learn
about the random fraction block, which returns a random number greater than or
equal to 0 and less than 1 each time it is called. Create the UpdateAphid procedure
shown in Figure 5-10 and add a call to it in Clock1.Timer.

How the blocks work
Whenever the timer goes off (100 times per second), both UpdateLadybug (like
before) and UpdateAphid are called. The first thing that happens in UpdateAphid
is that a random fraction between 0 and 1 is generated—for example, 0.15. If this
number is less than 0.20 (which will happen 20% of the time), the aphid will change
its direction to a random number of degrees between 0 and 360. If the number is not
less than 0.20 (which will be the case the remaining 80% of the time), the aphid will
stay the course.

Adding an Aphid  79 

Figure 5-10. Adding the procedure UpdateAphid

Having the Ladybug Eat the Aphid
The next step is having the ladybug “eat” the aphid when they collide. Fortunately,
App Inventor provides blocks for detecting collisions between ImageSprite com-
ponents, which raises the question: what should happen when the ladybug and the
aphid collide? You might want to stop and think about this before reading on.

To handle what happens when the ladybug and aphid collide, let’s create a proce-
dure, EatAphid, that does the following:

• Increases the energy level by 50 to simulate eating the tasty treat.

• Causes the aphid to disappear (by setting its Visible property to false).

• Causes the aphid to stop moving (by setting its Enabled property to false).

• Causes the aphid to move to a random location on the screen. (This follows the
same pattern as the code to move the mole in MoleMash).

Check that your blocks match Figure 5-11. If you had other ideas of what should
happen, such as sound effects, you can add those too.

80  Chapter 5:  Ladybug Chase

Figure 5-11. Adding the procedure EatAphid

How the blocks work
Whenever EatAphid is called, it adds 50 to the variable energy, staving off starva-
tion for the ladybug. Next, the aphid’s Visible and Enabled properties are set to
false so it seems to disappear and stops moving. Finally, random x and y coordinates
are generated for a call to Aphid.MoveTo so that, when the aphid reappears, it’s in a
new location (otherwise, it will be eaten as soon as it reemerges).

Detecting a Ladybug–Aphid Collision
Figure 5-12 shows the code to detect collisions between the ladybug and the aphid.
Note that when you add a condition to the “and” block, a new test socket appears.

Figure 5-12. Detecting and acting on collisions between the ladybug and aphid

How the blocks work
When the ladybug collides with another ImageSprite, Ladybug.CollidedWith gets
called, with the parameter “other” bound to whatever the ladybug collided with.
Right now, the only thing it can collide with is the aphid, but we’ll be adding a frog

Adding an Aphid  81 

later. We’ll use defensive programming and explicitly check that the collision was with
the aphid before calling EatAphid. There’s also a check to confirm that the aphid
is visible. Otherwise, after an aphid is eaten but before it reappears, it could collide
with the ladybug again. Without the check, the invisible aphid would be eaten again,
causing another jump in energy without the user understanding why.

Note. Defensive programming is the practice of writing code in such
a way that it is still likely to work even if the program gets modi-
fied. In Figure 5-12, the test other = Aphid is not strictly necessary
because the only thing the ladybug can currently collide with is the
aphid, but having the check will prevent our program from mal-
functioning if we add another ImageSprite and forget to change
Ladybug .CollidedWith. Programmers generally spend more time
fixing bugs than writing new code, so it is well worth taking a little
time to write code in a way that prevents bugs.

The Return of the Aphid
To make the aphid eventually reappear, you should modify UpdateAphid as shown in
Figure 5-13 so it changes the aphid’s direction only if it is visible. (Changing it if it’s in-
visible is a waste of time.) If the aphid is not visible (as in, it has been eaten recently),
there is a 1 in 20 (5%) chance that it will be reenabled—in other words, made eligible
to be eaten again.

Figure 5-13. Modifying UpdateAphid to make invisible aphids come back to life

82  Chapter 5:  Ladybug Chase

How the blocks work
UpdateAphid is getting pretty complex, so let’s carefully step through its behavior:

• If the aphid is visible (which will be the case unless it was just eaten), UpdateAphid
behaves as we first wrote it. Specifically, there is a 20% chance of its changing
direction.

• If the aphid is not visible (was recently eaten), then the “else-do” part of the ifelse
block will run. A random number is then generated. If it is less than .05 (which it
will be 5% of the time), the aphid becomes visible again and is enabled, making
it eligible to be eaten again.

Because UpdateAphid is called by Clock1.Timer, which occurs every 10 milliseconds,
and there is a 1 in 20 (5%) chance of the aphid becoming visible again, the aphid will
take on average 200 milliseconds (1/5 of a second) to reappear.

Adding a Restart Button
As you may have noticed from testing the app with your new aphid-eating
functionality, the game really needs a Restart button. (This is another reason why
it’s helpful to design and build your app in small chunks and then test it—you often
discover things that you may have overlooked, and it’s easier to add them as you
progress than to go back in and change them once the app is “complete.”) In the
Component Designer, add a Button component underneath EnergyCanvas, rename
it “RestartButton”, and set its Text property to “Restart”.

In the Blocks Editor, create the code shown in Figure 5-14 to do the following when
the RestartButton is clicked:

1. Set the energy level back to 200.

2. Reenable the aphid and make it visible.

3. Reenable the ladybug and change its picture back to the live ladybug (unless
you want zombie ladybugs!).

Figure 5-14. Restarting the game when RestartButton is pressed

Adding the Frog  83 

Adding the Frog
Right now, keeping the ladybug alive isn’t too hard. We need a predator. Specifically,
we’ll add a frog that moves directly toward the ladybug. If they collide, the ladybug
gets eaten, and the game ends.

Having the Frog Chase the Ladybug
The first step to having the frog chase the ladybug is returning to the Component
Designer and adding a third ImageSprite—Frog—to FieldCanvas. Set its Picture
property to the appropriate picture, its Interval to 10, and its Speed to 1, since it
should be slower-moving than the other creatures.

Figure 5-15 shows UpdateFrog, a new procedure you should create and call from
Clock1.Timer.

Figure 5-15. Making the frog move toward the ladybug

How the blocks work
By now, you should be familiar with the use of the random fraction block to make
an event occur with a certain probability. In this case, there is a 10% chance that the
frog’s direction will be changed to head straight toward the ladybug. This requires
trigonometry, but don’t panic—you don’t have to figure it out yourself! App Inventor
handles a ton of math functions for you, even stuff like trig. In this case, you want to
use the atan2 (arctangent) block, which returns the angle corresponding to a given
set of x and y values.

84  Chapter 5:  Ladybug Chase

(For those of you familiar with trigonometry, the reason the y argument to atan2 has
the opposite sign of what you’d expect—the opposite order of arguments to subtract—
is that the y coordinate increases in the downward direction on an Android Canvas,
the opposite of what would occur in a standard x–y coordinate system.)

Having the Frog Eat the Ladybug
We now need to modify the collision code so that if the ladybug collides with the
frog, the energy level and bar goes to 0 and the game ends, as shown in Figure 5-16.

Figure 5-16. Making the frog eat the ladybug

How the blocks work
In addition to the first if, which checks if the ladybug collided with the aphid, there
is now a second if, which checks if the ladybug has collided with the frog. If the lady-
bug and the frog collide, three things happen:

1. The variable energy goes down to 0, since the ladybug has lost its life force.

2. DisplayEnergy is called, to erase the previous energy line (and draw the
new—empty—one).

3. The procedure we wrote earlier, GameOver, is called to stop the ladybug from
moving and changes its picture to that of a dead ladybug.

Adding the Frog  85 

The Return of the Ladybug
RestartButton.Click already has code to replace the picture of the dead ladybug
with the one of the live ladybug. Now you need to add code to move the live lady-
bug to a random location. (Think about what would happen if you didn’t move the
ladybug at the beginning of a new game. Where would it be in relation to the frog?)
Figure 5-17 shows the blocks to move the ladybug when the game restarts.

Figure 5-17. The final version of RestartButton.Click

How the blocks work
The only difference between this version of RestartButton.Click and the previ-
ous version is the Ladybug.MoveTo block and its arguments. The built-in function
random integer is called twice, once to generate a legal x coordinate and once to
generate a legal y coordinate. While there is nothing to prevent the ladybug from
being placed on top of the aphid or the frog, the odds are against it.

Test your app. Restart the game and make sure the ladybug shows
up in a new random location.

86  Chapter 5:  Ladybug Chase

Adding Sound Effects
When you tested the game, you may have noticed there isn’t very good feedback
when an animal gets eaten. To add sound effects and tactile feedback, do the
following:

1. In the Component Designer, add a Sound component. Set its Source to the
sound file you uploaded.

2. Go to the Blocks Editor, where you will:

a. Make the phone vibrate when an aphid is eaten by adding a Sound1
.Vibrate block with an argument of 100 (milliseconds) in EatAphid.

b. Make the frog ribbit when it eats the ladybug by adding a call to
Sound1.Play in Ladybug.CollidedWith just before the call to
GameOver.

Variations
Here are some ideas of how to improve or customize this game:

• Currently, the frog and aphid keep moving after the game has ended. Prevent
this by setting their Enabled properties to false in GameOver and back to true in
RestartButton.Click.

• Display a score indicating how long the ladybug has remained alive. You can do
this by creating a label that you increment in Clock1.Timer.

• Make the energy bar more visible by increasing the Height of EnergyCanvas to 2
and drawing two lines, one above the other, in DrawEnergyLine. (This is another
benefit of having a procedure rather than duplicated code to erase and redraw
the energy line: you just need to make a change in one place to change the
size—or color, or location—of the line.)

• Add ambiance with a background image and more sound effects, such as nature
sounds or a warning when the ladybug’s energy level gets low.

• Have the game get harder over time, such as by increasing the frog’s Speed prop-
erty or decreasing its Interval property.

• Technically, the ladybug should disappear when it is eaten by the frog. Change
the game so that the ladybug becomes invisible if eaten by the frog but not if it
starves to death.

• Replace the ladybug, aphid, and frog pictures with ones more to your taste, such
as a hobbit, orc, and evil wizard or a rebel starfighter, energy pod, and Imperial
starfighter.

Summary  87 

Summary
With two games now under your belt (if you completed the MoleMash tutorial), you
now know how to create your own games, which is the goal of many new program-
mers or wannabes! Specifically, you learned:

• You can have multiple ImageSprite components (the ladybug, the aphid, and
the frog) and can detect collisions between them.

• The tilt of the phone can be detected by the OrientationSensor, and the
value can be used to control the movement of a sprite (or anything else you can
imagine).

• A single Clock component can control multiple events that occur at the same
frequency (changes in the ladybug’s and frog’s directions), or at different frequen-
cies, by using the random fraction block. For example, if you want an event to
occur approximately one-fourth (25 percent) of the time, put it in the body of an
if block that is only executed when the result of random fraction is less than .25.

• You can have multiple Canvas components in a single app, which we did to have
both a playing field and to display a variable graphically (instead of through a
Label).

• User-defined procedures can be defined with parameters (such as “color” and
“length” in DrawEnergyLine) that control the behavior, greatly expanding the
power of procedural abstraction.

Another component useful for games is Ball, which only differs from ImageSprite
in having the appearance of a filled circle rather than an arbitrary image.

CHAPTER 6

Paris Map Tour

In this chapter, you’ll build an app that lets you create your own custom guide for a
dream trip to Paris. And since a few of your friends can’t join you, we’ll create a compan-
ion app that lets them take a virtual tour of Paris as well. Creating a fully functioning map
app might seem really complicated, but App Inventor lets you use the ActivityStarter
component to launch Google Maps for each virtual location. First, you’ll build an app
that launches maps for the Eiffel Tower, the Louvre, and Notre Dame Cathedral with a
single click. Then you’ll modify the app to create a virtual tour of satellite maps that are
also available from Google Maps.

What You’ll Learn
This chapter introduces the following App Inventor components and concepts:

• The Activity Starter component for launching other Android apps from
your app. You’ll use this component here to launch Google Maps with various
parameters.

• The ListPicker component for allowing the user to choose from a list of
locations.

