
CHAPTER 14

Understanding an App’s Architecture

This chapter examines the structure of an app from a programmer’s perspective. It begins 
with the traditional analogy that an app is like a recipe and then proceeds to reconcep-
tualize an app as a set of components that respond to events. The chapter also examines 
how apps can ask questions, repeat, remember, and talk to the Web, all of which will be 
described in more detail in later chapters.

Many people can tell you what an app is from a user’s perspective, but understand-
ing what it is from a programmer’s perspective is more complicated. Apps have an 
internal structure that we must fully understand in order to create them effectively.

One way to describe an app’s internals is to break it into two parts, its components 
and its behaviors. Roughly, these correspond to the two main windows you use in 
App Inventor: you use the Component Designer to specify the objects (components) 
of the app, and you use the Blocks Editor to program how the app responds to user 
and external events (the app’s behavior).

Figure 14-1 provides an overview of this app architecture. In this chapter, we’ll explore 
this architecture in detail.



220  Chapter 14:  Understanding an App’s Architecture

 

App

Components

Visible

Button, Textbox,
Label, etc.

Non-visible

Texting,
LocationSensor,
Text To Speech

Button.Click,
Texting.MessageReceived

Event Response

Ball.MoveTo,
Texting.SendMessage,
set Label.Visible to

Variables Behaviors:
Event Handlers Procedures

Figure 14-1. The internal architecture of an App Inventor app

Components
There are two main types of components in an app: visible and non-visible. The app’s 
visible components are the ones you can see when the app is launched—things like 
buttons, text boxes, and labels. These are often referred to as the app’s user interface.

Non-visible components are those you can’t see, so they’re not part of the user in-
terface. Instead, they provide access to the built-in functionality of the device; for ex-
ample, the Texting component sends and processes SMS texts, the LocationSensor 
component determines the device’s location, and the TextToSpeech component 
talks. The non-visible components are the technology within the device—little 
people that do jobs for your app.

Both visible and non-visible components are defined by a set of properties. Properties 
are memory slots for storing information about the component. Visible components, 
for instance, have properties like Width, Height, and Alignment, which together 
define how the component looks. So a button that looks like the Submit button in 
Figure 14-2 to the end user is defined in the Component Designer with a set of prop-
erties, including those shown in Table 14-1.

Table 14-1. Button properties

Width Height Alignment Text

50 30 center Submit
Figure 14-2. Submit button



Behavior  221 

You can think of properties as something like the cells you see in a spreadsheet. You 
modify them in the Component Designer to define the initial appearance of a com-
ponent. If you change the number in the Width slot from 50 to 70, the button will 
appear wider, both in the Designer and in the app. Note that the end user of the app 
doesn’t see the 70; he just sees the button’s width change. 

Behavior
An app’s components are generally straightforward to understand: a text box is for 
entering information, a button is for clicking, and so on. An app’s behavior, on the 
other hand, is conceptually difficult and often complex. The behavior defines how 
the app should respond to events, both user initiated (e.g., a button click) and exter-
nal (e.g., an SMS text arriving to the phone). The difficulty of specifying such interac-
tive behavior is why programming is so challenging. 

Fortunately, App Inventor provides a visual “blocks” language perfectly suited for 
specifying behaviors. This section provides a model for understanding it.

An App As a Recipe
Traditionally, software has often been compared to a recipe. Like a 
recipe, a traditional app follows a linear sequence of instructions, 
such as those shown in Figure 14-3, that the computer (chef ) should 
perform.

A typical app might start a bank transaction (A), perform some 
computations and modify a customer’s account (B), and then print 
out the new balance on the screen (C).

An App As a Set of Event Handlers
However, most apps today, whether they’re for mobile phones, 
the Web, or desktop computers, don’t fit the recipe paradigm anymore. They don’t 
perform a bunch of instructions in a predetermined order; instead, they react to 
events—most commonly, events initiated by the app’s end user. For example, if the 
user clicks a button, the app responds by performing some operation (e.g., sending a 
text message). For touchscreen phones and devices, the act of dragging your finger 
across the screen is another event. The app might respond to that event by drawing 
a line from the point of your original touch to the point where you lifted your finger. 

These types of apps are better conceptualized as a set of components that respond 
to events. The apps do include “recipes”—sequences of instructions—but each 
recipe is only performed in response to some event, as shown in Figure 14-4.

A

B

C

Figure 14-3. 
Traditional 
software follows a 
linear sequence of 
instructions



222  Chapter 14:  Understanding an App’s Architecture

A

B

C

Event1

D

E

Event2

Figure 14-4. An app as multiple recipes hooked to events

So, as events occur, the app reacts by calling a sequence of functions. Functions are 
things you can do to or with a component—operations like sending an SMS text, or 
property-changing operations such as changing the text in a label of the user inter-
face. To call a function means to invoke it, to make it happen. We call an event and the 
set of functions performed in response to it an event handler.

Many events are initiated by the end user, but some are not. An app can react to 
events that happen within the phone, such as changes to its orientation sensor and 
the clock (i.e., the passing of time), and events created by things outside the phone, 
such as other phones or data arriving from the Web, as shown in Figure 14-5.

App

Clock
Other phones

User

Sensors

Web

GPS satellites

Figure 14-5. An app can respond to both internal and external events



Behavior  223 

One reason App Inventor programming is intuitive is that it’s based directly on this 
event-response paradigm; event handlers are primary “words” in the language (in 
many languages, this is not the case). You begin defining a behavior by dragging 
out an event block, which has the form, “When <event> do”. For example, consider an 
app, SpeakIt, that responds to button clicks by speaking the text the user has entered 
aloud. This application could be programmed with a single event handler, shown in 
Figure 14-6.

Figure 14-6. An event handler for a SpeakIt app

These blocks specify that when the user clicks the button named SpeakItButton, the 
TextToSpeech component should speak the words the user has entered in the text box 
named TextBox1. The response is the call to the function TextToSpeech1.Speak. The 
event is SpeakItButton.Click. The event handler includes all the blocks in Figure 14-6.

With App Inventor, all activity occurs in response to an event. Your app shouldn’t con-
tain blocks outside of an event’s “when-do” block. For instance, the blocks in Figure 
14-7 don’t make sense floating alone. 

Figure 14-7. Floating blocks won’t do anything outside an event handler

Event Types
The events that can trigger activity fall into the categories listed in Table 14-2.

Table 14-2. Events that can trigger activity

Event type Example

User-initiated event When the user clicks button1, do…

Initialization event When the app launches, do…

Timer event When 20 milliseconds passes, do…

Animation event When two objects collide, do…

External event When the phone receives a text, do…



224  Chapter 14:  Understanding an App’s Architecture

User-initiated events
User-initiated events are the most common type of event. With input forms, it is 
typically the button click event that triggers a response from the app. More graphical 
apps respond to touches and drags.

Initialization events
Sometimes your app needs to perform certain functions right when the app begins, 
not in response to any end-user activity or other event. How does this fit into the 
event-handling paradigm?

Event-handling languages like App Inventor consider the app’s launch as an event. If 
you want specific functions to be performed immediately when the app opens, you 
drag out a Screen1.Initialize event block and place some function call blocks within it.

For instance, in the game MoleMash (Chapter 3), the MoveMole procedure is called at 
the start of the app to randomly place the mole, as shown in Figure 14-8.

Figure 14-8. Using a Screen1.Initialize event block to move the mole when the app begins

Timer events
Some activity in an app is triggered by the passing of time. You can think of an 
animation as an object that moves when triggered by a timer event. App Inventor 
has a Clock component that can be used to trigger timer events. For instance, if you 
wanted a ball on the screen to move 10 pixels horizontally at a set time interval, your 
blocks would look like Figure 14-9.

Figure 14-9. Using a timer event block to move a ball whenever Clock1.Timer fires



Behavior  225 

Animation events
Activity involving graphical objects (sprites) within canvases will trigger events. So 
you can program games and other interactive animations by specifying what should 
occur when two objects collide or when an object reaches the edge of the canvas. 
For more information, see Chapter 17.

External events
When your phone receives location information from GPS satellites, an event is 
triggered. Likewise, when your phone receives a text, an event is triggered (Figure 
14-10). 

Such external inputs to the device are considered events, just like the user clicking a 
button. 

So every app you create will be a set of event handlers: one to initialize things, some 
to respond to the end user’s input, some triggered by time, and some triggered by 
external events. Your job is to conceptualize your app in this way and then design the 
response to each event handler.

Figure 14-10. The Texting1.MessageReceived event is triggered whenever a text is received

Event Handlers Can Ask Questions 
The responses to events are not always linear recipes; they 
can ask questions and repeat operations. “Asking ques-
tions” means to query the data the app has stored and 
determine its course (branch) based on the answers. We 
say that such apps have conditional branches, as illustrated 
in Figure 14-11.

In the diagram, when the event occurs, the app 
performs operation A and then checks a condition. 
Function B1 is performed if the condition is true. If the 
condition is false, the app instead performs B2. In either 
case, the app continues on to perform function C.

A

C

Yes No

Condition true?

B1 B2

Event1

Figure 14-11. An event handler 
can branch based on the answer 
to a conditional question



226  Chapter 14:  Understanding an App’s Architecture

Conditional tests are questions such as “Has the score reached 100?” or “Did the text 
I just received come from Joe?” Tests can also be more complex formulas including 
multiple relational operators (less than, greater than, equal to) and logical operators 
(and, or, not).

You specify conditional behaviors in App Inventor with the if and ifelse blocks. For 
instance, the block in Figure 14-12 would report “You Win!” if the player scored 100 
points.

Conditional blocks are discussed in detail in Chapter 18.

Figure 14-12. Using an if block to report a win once the player reaches 100 points

Event Handlers Can Repeat Blocks
In addition to asking questions and branching based on the answer, your app can also 
repeat operations multiple times. App Inventor provides two blocks for repeating, the 
foreach and the while do. Both enclose other blocks. All the blocks within foreach 
are performed once for each item in a list. For instance, if you wanted to text the same 
message to a list of phone numbers, you could use the blocks in Figure 14-13.

Figure 14-13. The blocks within the foreach block are repeated for each item in the list

The blocks within the foreach block are repeated—in this case, three times, because 
the list PhoneNumbers has three items. So the message “thinking of you…” is sent 
to all three numbers. Repeating blocks are discussed in detail in Chapter 20.



Summary  227 

Event Handlers Can Remember Things
Because an event handler executes blocks, it often needs to keep track of informa-
tion. Information can be stored in memory slots called variables, which you define in 
the Blocks Editor. Variables are like component properties, but they’re not associated 
with any particular component. In a game app, for example, you can define a variable 
called “score” and your event handlers would modify its value when the user does 
something accordingly. Variables store data temporarily while an app is running; 
when you close the app, the data is no longer available.

Sometimes your app needs to remember things not just while it runs, but even when 
it is closed and then reopened. If you tracked a high score for the history of a game, 
for example, you’d need to store this data long-term so it is available the next time 
someone plays the game. Data that is retained even after an app is closed is called 
persistent data, and it’s stored in some type of a database.

We’ll explore the use of both short-term memory (variables) and long-term memory 
(database data) in Chapters 16 and 22, respectively. 

Event Handlers Can Talk to the Web 
Some apps use only the information within the phone or device. But many apps 
communicate with the Web by sending requests to web service APIs (application pro-
gramming interfaces). Such apps are said to be “web-enabled.”

Twitter is an example of a web service to which an App Inventor app can talk. You 
can write apps that request and display your friend’s previous tweets and also 
update your Twitter status. Apps that talk to more than one web service are called 
mashups. We’ll explore web-enabled apps in Chapter 24.

Summary
An app creator must view his app both from an end-user perspective and from the 
inside-out perspective of a programmer. With App Inventor, you design how an app 
looks and then you design its behavior—the set of event handlers that make an app 
behave as you want. You build these event handlers by assembling and configuring 
blocks representing events, functions, conditional branches, repeat loops, web calls, 
database operations, and more, and then test your work by actually running the app 
on your phone. After you write a few programs, the mapping between the internal 
structure of an app and its physical appearance becomes clear. When that happens, 
you’re a programmer!




