
CHAPTER 17

Creating Animated Apps

This chapter discusses methods for creating apps with
simple animations—objects that move. You’ll learn the
basics of creating two-dimensional games with App
Inventor and become comfortable with image sprites
and handling events like two objects colliding.

When you see an object moving smoothly along the
computer screen, what you’re really seeing is a quick
succession of images with the object in a slightly differ-
ent place each time. It’s an illusion not much different
from “flipbooks,” in which you see a moving picture by
flipping quickly through the pages (and it’s also how far
more sophisticated animated films are made!).

With App Inventor, you’ll define animation by placing
objects within a Canvas component and moving those
objects around the Canvas over time. In this chapter,
you’ll learn how the Canvas coordinate system works,
how the Clock.Timer event can be used to trigger movement, how to control the speed of
objects, and how to respond to events such as two objects colliding.

Adding a Canvas Component to Your App
You can drag a Canvas component into your app
from the Basic palette. After dragging it out, spec-
ify the Canvas’s Width and Height. Often, you’ll
want the Canvas to span the width of the device
screen. To do this, choose “Fill parent” when speci-
fying the Width, as shown in Figure 17-1.

You can do the same for the Height, but
generally you’ll set it to some number (e.g., 300
pixels) to leave room for other components
above and below the Canvas.

Figure 17-1. Setting the Canvas’s Width
to span the screen

250  Chapter 17:  Creating Animated Apps

The Canvas Coordinate System
A drawing on a canvas is really a table of pixels, where a pixel is the tiniest possible
dot of color that can appear on the phone (or other device). Each pixel has a location
(or table cell) on the canvas, which is defined by an x–y coordinate system, as illus-
trated in Figure 17-2. In this coordinate system, x defines a location on the horizontal
plane (left to right), and y defines a location on the vertical plane (up and down).

x=0, y=0 x=19, y=0

x=0, y=14

x=3, y=3

x=19, y=14

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 17-2. The Canvas coordinate system

It might seem a bit counterintuitive, but the top-left cell in a Canvas starts with 0 for
both coordinates, so this position is represented as (x=0,y=0). (This is different than
the index you use in App Inventor for lists, which starts at the seemingly more nor-
mal value of 1.) As you move right, the x coordinate gets larger; as you move down,
the y coordinate gets larger. The cell to the immediate right of the top-left corner is
(x=1,y=0). The top-right corner has an x coordinate equal to the width of the canvas
minus 1. Most phone screens have a width close to 300, but for the sample canvas
shown here, the Width is 20, so the top-right corner is the coordinate (x=19,y=0).

You can change the appearance of the canvas in two ways: (1) by painting on it, or
(2) by placing and moving objects within it. This chapter will focus primarily on the
latter, but let’s first discuss how you “paint” and how to create animation by painting
(this is also the topic of the PaintPot app in Chapter 2).

Each cell of the canvas holds a pixel defining the color that should appear there.
The Canvas component provides the Canvas.DrawLine and Canvas.DrawCircle
blocks for painting pixels on it. You first set the Canvas.PaintColor property to

Animating Objects with Timer Events  251 

the color you want and then call one of the Draw blocks to draw in that color. With
DrawCircle, you can paint circles of any radius, but if you set the radius to 1, as
shown in Figure 17-3, you’ll paint an individual pixel.

Figure 17-3. DrawCircle with radius 1 paints an individual pixel with each touch

App Inventor provides a palette of 14 basic colors that you can use to paint pixels (or
component backgrounds). You can access a wider range of colors by using the color
numbering scheme explained in the App Inventor documentation at http://appinventor
.googlelabs.com/learn/reference/blocks/colors.html.

The second way to modify the appearance of a canvas is to place Ball and
ImageSprite components on it. A sprite is a graphical object placed within a larger
scene—in this case, a canvas. Both the Ball and ImageSprite components are sprites;
they are different only in appearance. A Ball is a circle whose appearance can only be
modified by changing its color or radius, whereas an ImageSprite can take on any ap-
pearance as defined by an image file you upload. Image Sprites and Balls can only be
added within a Canvas; you can’t drag them into the user interface outside of one.

Animating Objects with Timer Events
One way to specify animation in App Inventor is to change an object in response to a
timer event. Most commonly, you’ll move sprites to different locations on the canvas
at set time intervals. Using timer events is the most general method of defining
those set time intervals. Later, we’ll also discuss an alternative method of program-
ming animation using the ImageSprite and Ball components’ Speed and Heading
properties.

http://appinventor.googlelabs.com/learn/reference/blocks/colors.html
http://appinventor.googlelabs.com/learn/reference/blocks/colors.html

252  Chapter 17:  Creating Animated Apps

Button clicks and other user-initiated events are simple to understand: the user does
something, and the app responds by performing some operations. Timer events are
different: they aren’t triggered by the end user but instead by the passing of time.
You have to conceptualize the phone’s clock triggering events in the app instead of a
user doing something.

To define a timer event, you first drag a Clock component into your app within the
Component Designer. The Clock component has a TimerInterval property associ-
ated with it. The interval is defined in terms of milliseconds (1/1,000 of a second). If
you set the TimerInterval to 500, that means a timer event will be triggered every
half-second. The smaller the TimerInterval, the faster your object will move.

After adding a Clock and setting a TimerInterval in the Designer, you can drag out a
Clock.Timer event in the Blocks Editor. You can put any blocks you like in this event,
and they’ll be performed every time interval.

Creating Movement
To show a sprite moving over time, you’ll use the MoveTo function found in both the
ImageSprite and Ball components. For example, to move a ball horizontally across
the screen, you’d use the blocks in Figure 17-4.

Figure 17-4. Moving the ball horizontally across the screen

MoveTo moves an object to an absolute location on the canvas, not a relative
amount. So, to move an object some amount, you set the MoveTo arguments to the
object’s current location plus an offset. Since we’re moving horizontally, the x argu-
ment is set to the current x location (Ball1.X) plus the offset 20, while the y argument
is set to stay at its current setting (Ball1.Y).

If you wanted to move the ball diagonally, you’d add an offset to both the x and y
coordinates, as shown in Figure 17-5.

High-Level Animation Functions  253 

Figure 17-5. Offsetting both the x and y coordinates to move the ball diagonally

Speed
How fast is the ball moving in the preceding example? The speed depends on both
the Clock’s TimerInterval property and the parameters you specify in the MoveTo
function. If the interval is set to 1,000 milliseconds, that means an event will be trig-
gered every second. For the horizontal example shown in Figure 17-4, the ball will
move 20 pixels per second.

But a TimerInterval of 1,000 milliseconds doesn’t provide very smooth animation;
the ball will only move every second, and this will appear jerky. To get smoother
movement, you need a smaller interval. If the TimerInterval was set instead to 100
milliseconds, the ball would move 20 pixels every tenth of a second, or 200 pixels per
second—a rate that will appear much smoother to anyone using your app. There’s
another way to change the speed instead of changing the timer interval—can you
think of what that is? (Hint: Speed is a function of how often you move the ball and
how far you move it each time.) You could also alter speed by keeping a timer inter-
val of 1,000 milliseconds and instead changing the MoveTo operation so the ball
only moves 2 pixels every time interval—2 pixels/100ms is still 20 pixels/second.

High-Level Animation Functions
The ability to move an object across the screen is useful for things like animated ads
that slide in and out, but to build games and other animated apps, you need more
complex functionality. Fortunately, App Inventor provides some high-level blocks for
dealing with animation events such as an object reaching the screen’s edge or two
objects colliding.

In this context, high-level block means that App Inventor takes care of the lower-level
details of determining events like when two sprites collide. You could check for such
occurrences yourself using Clock.Timer events and checking the X,Y, Height, and
Width properties of the sprites. Such programming would require some fairly com-
plex logic, however. Because these events are common to many games and other
apps, App Inventor provides them for you.

254  Chapter 17:  Creating Animated Apps

EdgeReached
Consider again the animation in which the object is moving diagonally from the top
left to the bottom right of the canvas. As we programmed it, the object would move
diagonally and then stop when it reached the right or bottom edge of the canvas
(the system won’t move an object past the canvas boundaries).

If you instead wanted the object to reappear at the top-left corner after it reaches the
bottom right, you could define a response to the Ball.EdgeReached event shown in
Figure 17-6.

Figure 17-6. Making the ball reappear at the top-left corner when it reaches an edge

EdgeReached (an event that is applicable only for sprites and balls) is triggered
when the Ball hits any edge of the canvas. This event handler, combined with the
diagonal movement specified with the previously described timer event, will cause
the ball to move diagonally from top left to bottom right, pop back up to the top
left when it reaches the edge, and then do it all over again, forever (or until you tell it
otherwise).

Note that there is an argument, edge1, with the EdgeReached event. The argument
specifies which edge the ball reached, using the following directional numbering
scheme:

• North = 1

• Northeast = 2

• East = 3

• Southeast = 4

• South = –1

• Southwest = –2

• West = –3

• Northwest = –4

High-Level Animation Functions  255 

CollidingWith and NoLongerCollidingWith
Shooting games, sports, and other animated apps often rely on activity occurring
when two or more objects collide (e.g., a bullet hitting a target).

Consider a game, for instance, in which an object changes colors and plays an explo-
sion sound when it hits another object. Figure 17-7 shows the blocks for such an
event handler.

Figure 17-7. Making the ball change color and play an explosion sound when it hits another object

NoLongerCollidingWith provides the opposite event of CollidedWith. It is trig-
gered only when two objects have come together and then separated. So, for your
game, you might include blocks as shown in Figure 17-8.

Figure 17-8. Changing the color back and stopping the explosion noise when the objects separate

Note that both CollidedWith and NoLongerCollidingWith have an argument,
other. other specifies the particular object you collided with (or separated from).
This allows you to perform operations only when the object (e.g., Ball1) interacts
with a particular other object, as shown in Figure 17-9.

Figure 17-9. Only perform the response if Ball1 hit ImageSprite1

256  Chapter 17:  Creating Animated Apps

The component ImageSprite1 block is one we haven’t yet discussed. When you
need to compare components (to know which ones have collided), as in this ex-
ample, you must have some way to refer to a specific component. For this rea-
son, each component has a special block that refers to itself. So, in the drawer for
ImageSprite1, you’ll find the component ImageSprite1 block.

Interactive Animation
In the animated behaviors we’ve discussed so far, the end user isn’t involved. Of
course, games are interactive, with the end user playing a central role. Often, the end
user controls the speed or direction of an object with buttons or other user interface
objects.

As an example, let’s update the diagonal animation by allowing the user to stop and
start the diagonal movement. You can do this by programming a Button.Click event
handler to disable and reenable the timer event of the clock component.

By default, the Clock component’s timerEnabled property is checked. You can disable
it dynamically by setting it to false in an event handler. The event handler in Figure
17-10, for example, would stop the activity of a Clock timer on the first click.

Figure 17-10. Stopping the timer the first time the button is clicked

After the Clock1.TimerEnabled property is set to false, the Clock1.Timer event will
no longer trigger, and the ball will stop moving.

Of course, stopping the movement on the first click isn’t too interesting. Instead, you
could “toggle” the movement of the ball by adding an ifelse in the event handler
that either enables or disables the timer, as shown in Figure 17-11.

This event handler stops the timer on first click, and resets the button so that
it says “Start” instead of “Stop.” The second time the user clicks the button, the
TimerEnabled is false, so the “else” part is executed. In this case, the timer is enabled,
which gets the object moving again, and the button text is switched back to “Stop.”
For more information about ifelse blocks, see Chapter 18, and for examples of inter-
active animations that use the orientation sensor, see Chapters 5 and 23.

Specifying Sprite Animation Without a Clock Timer  257 

Figure 17-11. Adding an ifelse so that clicking the button starts and stops the movement of the ball

Specifying Sprite Animation Without a Clock Timer
The animation samples described so far use a Clock component and specify that an
object should move each time the Clock’s timer event is triggered. The Clock .Timer
event scheme is the most general method of specifying animation; other than mov-
ing an object, you could also have it change an object’s color over time, change
some text (to appear as though the app is typing), or have the app speak words at a
certain pace.

For object movement, App Inventor provides an alternative that doesn’t require
the use of a Clock component. As you may have noticed, the ImageSprite and Ball
components have properties for Heading, Speed, and Interval. Instead of defining a
Clock.Timer event handler, you can set these properties in the Component Designer
or Blocks Editor to control how a sprite moves.

To illustrate, let’s reconsider the example that moved a ball diagonally. The Heading
property of a sprite or ball has a range of 360 degrees, as seen in Figure 17-12.

180 deg. 0 deg.

90 deg.

270 deg.

Figure 17-12. The Heading property has a range of 360 degrees

258  Chapter 17:  Creating Animated Apps

If you set the Heading to 0, the ball will move left to right. If you set it to 90, it will
move bottom to top. If you set it to 180, it will move right to left. If you set it to 270, it
will move top to bottom.

Of course, you can set it to any number between 0 and 360. To move a ball diagonally
from top left to bottom right, you’d set the Heading to 315. You also need to set the
Speed property to a value other than 0. The Speed property works the same way as
moving objects with MoveTo: it specifies the number of pixels the object will move
per time interval, where the interval is defined by the object’s Interval property.

To try out these properties, create a test app with a Canvas and Ball and click
“Connect to Phone” to see your app. Then modify the Heading, Speed, and Interval
properties of the ball to see how it moves.

If you wanted the program to continually move from top left to bottom right and
then back, you’d initialize the ball’s Heading property to 315 in the Component
Designer. You’d then add the Ball1.EdgeReached event handler, shown in Figure
17-13, to change the ball’s direction when it reaches either edge.

Figure 17-13. Changing the ball’s direction when it reaches either edge

Summary
Animation is an object being moved or otherwise transformed over time, and App
Inventor provides some high-level components and functionality to facilitate it. By pro-
gramming the Clock component’s Timer event, you can specify any type of animation,
including object movement—the fundamental activity in almost any type of game.

The Canvas component allows you to define a subarea of the device’s screen in
which objects can move around and interact. You can put only two types of compo-
nents, ImageSprites and Balls, within a Canvas. These components provide high-
level functionality for handling events such as collisions and reaching a Canvas edge.
They also have properties—Heading, Speed and Interval—that provide an alternative
method of movement.

