
CHAPTER 18

Programming Your App to Make 
Decisions: Conditional Blocks

Computers, even small ones like the phone in 
your pocket, are good at performing thou-
sands of operations in just a few seconds. 
Even more impressively, they can also make 
decisions based on the data in their memory 
banks and logic specified by the programmer. 
This decision-making capability is probably 
the key ingredient of what people think of as 
artificial intelligence—and it’s definitely a very 
important part of creating smart, interest-
ing apps! In this chapter, we’ll explore how to 
build decision-making logic into your apps.

As we discussed in Chapter 14, an app’s behavior is 
defined by a set of event handlers. Each event handler 
executes specific functions in response to a particular 
event. The response need not be a linear sequence of 
functions, however; you can specify that some functions 
be performed only under certain conditions. A game 
app might check if the score has reached 100. A location-
aware app might ask if the phone is within the boundar-
ies of some building. Your app can ask such questions 
and, depending on the answer, proceed down a certain 
program branch (or direction).

Figure 18-1 depicts a flowchart of an event handler with 
a conditional check.

When the event occurs, function A is performed no mat-
ter what. Then a decision test is performed. If the test 
is true, B1 is performed. If it is false, B2 is performed. In 
either case, the rest of the event handler (C) is completed.

A

C

Yes No

Condition true?

B1 B2

Event1

Figure 18-1. An event handler 
that tests for a condition and 
branches accordingly



260  Chapter 18:  Programming Your App to Make Decisions: Conditional Blocks

Because decision diagrams like the one in Figure 18-1 look something like trees, it is 
common to say that the app “branches” one way or the other depending on the test 
result. So, in this instance, you’d say, “If the test is true, the branch containing B1 is 
performed.”

Testing Conditions with if and ifelse Blocks
App Inventor provides two types of conditional blocks (Figure 18-2): if and ifelse, 
both of which are found in the Control drawer of the Built-In palette.

Figure 18-2. The if and ifelse conditional blocks

You can plug any Boolean expression into the “test” slot of these blocks. A Boolean 
expression is a mathematical equation that returns a result of either true or false. 
The expression tests the value of properties and variables using relational and logical 
operators such as the ones shown in Figure 18-3.

Figure 18-3. Relational and logical operator blocks used in conditional tests

For both if and ifelse, the blocks you put within the “then-do” slot will only be 
executed if the test is true. For an if block, if the test is false, the app moves on to 
the blocks below it. If the ifelse test is false, the blocks within the “else-do” slot are 
performed.

So, for a game, you might plug in a Boolean expression concerning the score, as 
shown in Figure 18-4.



Programming an Either/Or Decision  261 

Figure 18-4. A Boolean expression used to test the score value

In this example, a sound file is played if the score goes over 100. Note that if the test 
is false, no blocks are executed. If you want a false test to trigger an action, you can 
use an ifelse block.

Programming an Either/Or Decision
Consider an app you could use when you’re bored: you press a button on your 
phone, and it calls a random friend. In Figure 18-5, we use a random integer block 
to generate a random number and then an ifelse block to call a particular phone 
number based on that random number.

Figure 18-5. This ifelse block calls one of two numbers based on the randomly generated integer

In this example, random integer is called with arguments 1 and 2, meaning that the 
returned random number will be 1 or 2 with equal likelihood. The variable RandomNum 
stores the random number returned.

After setting RandomNum, the blocks compare it to the number 1 in the ifelse test. If 
the value of RandomNum is 1, the app takes the first branch (then-do), and the phone 
number is set to 111–1111. If the value is not 1, the test is false, so the app takes the 
second branch (else-do), and the phone number is set to 222–2222. The app makes 
the phone call either way because the call to MakePhoneCall is below the entire 
ifelse block.



262  Chapter 18:  Programming Your App to Make Decisions: Conditional Blocks

Programming Conditions Within Conditions
Many decision situations are not binomial—that is, they don’t have just two out-
comes to choose from. For example, you might want to choose between more than 
two friends in your Random Call program. To do this, you could place an ifelse within 
the original else-do clause, as shown in Figure 18-6.

Figure 18-6. An ifelse condition is placed within the else-do of an outer condition

With these blocks, if the first test is true, the app executes the first then-do branch 
and calls the number 111–1111. If the first test is false, the outer else-do branch is 
executed, which immediately runs another test. So, if the first test (RandomNum=1) 
is false, and the second (RandomNum=2) is true, the second then-do is executed, and 
222–2222 is called. If both tests are false, the inner else-do branch at the bottom is 
executed, and the third number (333–3333) is called.

Note that this modification only works because the to parameter of the random 
integer call was changed to 3 so that 1, 2, or 3 is called with equal likelihood.

Placing one control construct within another is called nesting. In this case, you’d say the 
blocks had a “nested if-else.” You can use such nested logic to provide more choices in 
your Random Call app, and in general, to add arbitrary complexity to any app.



Programming Complex Conditions  263 

Programming Complex Conditions
Besides nesting questions, you can also specify tests that are more complex than a 
simple equality test. For example, consider an app that vibrates when you (and your 
phone) leave a building or some boundary. Such an app might be used by a person 
on probation to warn him when he strays too far from his legal boundaries, or by par-
ents to monitor their children’s whereabouts. A teacher might use it to automatically 
take roll (if all her students have an Android phone!).

For this example, let’s ask this question: is the phone within the boundary of Harney 
Science Center at the University of San Francisco? Such an app would require a com-
plex test consisting of four different questions:

• Is the phone’s latitude less than the maximum latitude (37.78034) of the 
boundary?

• Is the phone’s longitude less than the maximum longitude (–122.45027) of the 
boundary?

• Is the phone’s latitude more than the minimum latitude (37.78016) of the 
boundary?

• Is the phone’s longitude more than the minimum longitude (–122.45059) of the 
boundary?

We’ll be using the LocationSensor component for this example. You should be able 
to follow along here even if you haven’t been exposed to LocationSensor, but you 
can learn more about it in Chapter 23. 

You can build complex tests using the logical operators and, or, and not, which are 
found in the Logic drawer. In this case, you’d start by dragging out an if block and an 
and block and then placing the and block within the “test” slot of the if, as illustrated 
in Figure 18-7.

Figure 18-7. An and block is placed within the “test” slot of the if block

You’d then drag out blocks for the first question and place them into the and block’s 
“test” slot, as shown in Figure 18-8.



264  Chapter 18:  Programming Your App to Make Decisions: Conditional Blocks

Figure 18-8. When the blocks for the first test are placed into the and block, a new test slot opens

Note that as you fill a (sub-)test of the and block, a new test slot opens. If you fill 
these slots with the other tests and place the entire ifelse within a LocationSensor 
.LocationChanged event, you’ll have an event handler that checks the boundary, as 
shown in Figure 18-9.

Figure 18-9. This event handler checks the boundary each time the location changes

With these blocks, each time the LocationSensor gets a new reading and its location 
is within the boundary, the phone vibrates. 

OK, so far this is pretty cool, but now let’s try something even more complicated 
to give you an idea of the full extent of the app’s decision-making powers. What if 
you wanted the phone to vibrate only when the boundary was crossed from in-
side to outside? Before moving ahead, think about how you might program such a 
condition.

Our solution is to define a variable withinBoundary that remembers whether the 
previous sensor reading was within the boundary or not, and then compares that 
to each successive sensor reading. withinBoundary is an example of a Boolean 



Programming Complex Conditions  265 

variable—instead of storing a number or text, it stores true or false. For this example, 
you’d initialize it as false, as shown in Figure 18-10, meaning that the device is not 
within USF’s Harney Science Center.

Figure 18-10. withinBoundary is initialized as false

The blocks can now be modified so that the withinBoundary variable is set on each 
location change, and so that the phone vibrates only when it moves from inside to 
outside the boundary. To put that in terms we can use for blocks, the phone should 
vibrate when (1) the variable withinBoundary is true, meaning the previous read-
ing was inside the boundary, and (2) the new location sensor reading is outside the 
boundary. Figure 18-11 shows the updated blocks.

Figure 18-11. These blocks cause the phone to vibrate only when it moves from within the boundary to 
outside the boundary

Let’s examine these blocks more closely. When the LocationSensor gets a reading, 
it first checks if the new reading is within the boundary. If it is, LocationSensor sets 
the withinBoundary variable to true. Since we want the phone to vibrate only when 
we are outside the boundary, no vibration takes place in this first branch.



266  Chapter 18:  Programming Your App to Make Decisions: Conditional Blocks

If we get to the else-do, we know that the new reading is outside the boundary. At 
that point, we have to check the previous reading: if we’re outside the boundary, 
we want the phone to vibrate only if the previous reading was inside the boundary. 
withinBoundary tells us the previous reading, so we can check that. If it is true, we 
vibrate the phone. 

There’s one more thing we need to do once we’ve confirmed that the phone has 
moved from inside to outside the boundary—can you think of what it is? We also 
need to reset withinBoundary to false so the phone won’t vibrate again on the next 
sensor reading.

One last note on Boolean variables: check out the two if tests in Figure 18-12. Are 
they equivalent?

Figure 18-12. Can you tell whether these two if tests are equivalent?

The answer is “yes!” The only difference is that the test on the right is actually the 
more sophisticated way of asking the question. The test on the left compares the 
value of a Boolean variable with true. If withinBoundary contains true, you com-
pare true to true, which is true. If the variable contains false, you compare false 
to true, which is false. However, just testing the value of withinBoundary, as in the 
test on the right, gives the same result and is easier to code.

Summary
Is your head spinning? That last behavior was quite complex! But it’s the type of 
decision making that sophisticated apps need to perform. If you build such behav-
iors part by part (or branch by branch) and test as you go, you’ll find that specifying 
complex logic—even, dare we say, artificial intelligence—is doable. It will make your 
head hurt and exercise the logical side of your brain quite a bit, but it can also be lots 
of fun. 




