
CHAPTER 21

Defining Procedures: Reusing Blocks

Programming languages like App Inventor provide a
base set of built-in functionality—in App Inventor’s
case, a base set of blocks. Programming languages
also provide a way to extend that functionality by
adding new functions (blocks) to the language. In App
Inventor, you do this by defining procedures—named
sequences of blocks—that your app can call just as it
calls App Inventor’s predefined blocks. As you’ll see in
this chapter, being able to create such abstractions is
very important for solving complex problems, which is
the cornerstone of building truly compelling apps.

When parents tell their child, “Go brush your teeth
before bed,” they really mean “take your toothbrush
and toothpaste from the cabinet, squeeze out some
toothpaste onto the brush, swivel the brush on
each tooth for 10 seconds (ha!),” and so on. “Brush
your teeth” is an abstraction: a recognizable name for a sequence of lower-level
instructions. In this case, the parents are asking the child to perform the instructions
that they’ve all agreed mean “brush your teeth.”

In programming, you can create such named sequences of instructions. Some pro-
gramming languages call them functions or subprograms. In App Inventor, they’re
called procedures. A procedure is a named sequence of blocks that can be called from
any place in an app.

Figure 21-1 is an example of a procedure whose job is to find the distance, in miles,
between two GPS coordinates you send to it.

292  Chapter 21:  Defining Procedures: Reusing Blocks

Figure 21-1. Procedure for computing the distance between points

Don’t worry about the internals of this procedure too much just yet; just realize that
procedures like this let you extend the language by which you design and build
programs. If every parent had to explain the steps of “brush your teeth” to his or her
child each night, that kid might not make it to the fifth grade. It’s much more effi-
cient to just say, “Brush your teeth,” and everyone can move on with getting to bed at
a reasonable hour.

Similarly, once you define the procedure distanceBetweenPoints, you can ignore
the details of how it works and simply refer to the procedure’s name (or call it) when
designing or coding a larger app. This type of abstraction is key to solving large prob-
lems and lets us break down a large software project into more manageable chunks
of code.

Procedures also help reduce errors because they eliminate redundancy in your
code. With procedures, you can put a chunk of code in one place and then call it
from various places in your app. So, if you’re building an app that needs to know
the minimum distance between your current location and 10 other spots, you don’t
need to have 10 copies of the blocks shown in Figure 21-1. Instead, you just define
the procedure and then call it whenever you need it. The alternative—copying and
pasting blocks—is much more error-prone because when you make a change, you
have to find all the other copies of those blocks and change each one in the same
way. Imagine trying to find the 5–10 places where you pasted a particular chunk of
code in an app with 1,000 lines or blocks! Instead of forcing you to copy and paste, a
procedure lets you encapsulate blocks in one place.

Procedures also help you build up a library of code that can be reused in many apps.
Even when building an app for a very specific purpose, experienced programmers
are always thinking of ways to reuse parts in other apps should the need arise. Some
programmers never even create apps, but instead focus solely on building reusable
code libraries for other programmers to use in their apps!

Eliminating Redundancy  293 

Eliminating Redundancy
Take a look at the code blocks in Figure 21-2. See if you can you identify the redun-
dant ones.

Figure 21-2. A Note Taker app with redundant code

The redundant blocks are the ones involving a foreach block (actually the foreach
and the set NotesLabel.Text to above it). In all three foreach instances, the block’s
job is to display the notes list. In this app, this behavior needs to take place when a
new item is added, when an item is removed, and when the list is loaded from the
database at application launch.

When experienced programmers see such redundancy, a bell goes off in their heads,
probably even before they’ve copied and pasted the blocks in the first place. They
know that it’s best to encapsulate such redundancy into a procedure, both to make
the program more understandable and so that changes will be much easier later.

So an experienced programmer would create a procedure, move the redundant
blocks into it, and then call the procedure from the three places containing the redun-
dant blocks. The app will not behave any differently, but it will be easier to maintain
and easier for other programmers to work with. Such code (block) reorganization is
called refactoring.

294  Chapter 21:  Defining Procedures: Reusing Blocks

Defining a Procedure
Let’s build a procedure to do the job of the redundant code blocks from Figure 21-2. In
App Inventor, you define a procedure in a manner similar to how you define variables.
From the Definition drawer, drag out either a to procedure block or a to procedure
with result block. Use the latter if your procedure should calculate some value and
return it (we’ll discuss this approach a bit later in the chapter).

After dragging out a to procedure block, you can change its name from the default
“procedure” by clicking the word “procedure” and typing the new name. The redun-
dant blocks we’re refactoring performed the job of displaying a list, so we’ll name the
procedure displayList, shown in Figure 21-3.

Figure 21-3. Giving the procedure a name

The next step is to add the blocks within the procedure. In this case, we’re using
blocks that already exist, so we’ll drag one of the original redundant blocks out of its
event handler and place it within the to displayList block, as shown in Figure 21-4.

Figure 21-4. The displayList procedure encapsulates the redundant code

We can now display the notes list using a procedure that you can easily call from
elsewhere in your app!

Calling a Procedure  295 

Calling a Procedure
Procedures, like displayList and “brush your teeth,” are entities with the potential
to perform a task. However, they’ll only perform that task if they are called upon to
do so. Thus far, we’ve created a procedure but haven’t called it. To call a procedure
means to invoke it, or to make it happen.

In App Inventor, you call a procedure by dragging out a call block from the My
Definitions drawer. Recall that the My Definitions drawer is empty when you first
begin an app. Each time you define something, new blocks appear in it. When you
define a variable, blocks to set and access the variable’s value are added. When you
define a procedure, a call block is added, as shown in Figure 21-5.

Figure 21-5. A call block appears in “My Definitions” when you define a procedure

You use call blocks all the time to call App Inventor’s predefined functions, like
Ball.MoveTo and Texting.SendMessage. When you define a procedure, you have
in essence created your own block; you’ve extended the App Inventor language. The
new call block lets you invoke your creation.

For the Note Taker app sample, you’d drag out three call displayList blocks and use
them to replace the redundant code in the three event handlers. For instance, the
ListPicker1.AfterPicking event handler (for deleting a note) should be modified as
shown in Figure 21-6.

Figure 21-6. Using the displayList call to invoke the blocks now in the procedure

296  Chapter 21:  Defining Procedures: Reusing Blocks

The Program Counter
To understand how the call block works, think of an app as having a pointer that
steps through the blocks performing functions. In computer science, this pointer is
called the program counter.

When the program counter is performing the blocks within an event handler and
it reaches a call block, it jumps over to the procedure and executes the blocks in it.
When the procedure completes, the program counter jumps back to its previous
location (the call block) and proceeds from there. So, for the Note Taker example,
the remove list item block is performed; then the program counter jumps to the
displayList procedure and performs its blocks (setting the NotesLabel.Text to the
empty text, and the foreach); and finally the program counter returns to perform the
TinyDB1.StoreValue block.

Adding Parameters to Your Procedure
The displayList procedure allows redundant code to be refactored into a single
place. The app is easier to understand because you can read the event handlers at a
high level and generally ignore the details of how a list is displayed. It is also helpful
because you may decide to modify how you display the list, and the procedure allows
you to make such a modification in a single place (instead of three).

The displayList procedure has limits in terms of its general usefulness, however.
The procedure works for a specific list (notes) and displays that list in a specific label
(NotesLabel). You couldn’t use it to display a different data list—say, a list of the
app’s users—because it is defined too specifically.

App Inventor and other languages provide a mechanism called parameters for mak-
ing procedures more general. Parameters comprise the information a procedure
needs to do its job—the specifics of how the procedure should be performed. In our
bedtime tooth-brushing example, you might define “toothpaste type” and “brushing
time” as parameters of the procedure “brush your teeth.”

You define parameters for a procedure by dragging out a name block from the
Definition drawer and plugging it into a procedure slot labeled “arg.” For the display
List procedure, we would define a parameter named “list,” as shown in Figure 21-7.

Adding Parameters to Your Procedure  297 

Figure 21-7. The procedure now accepts a list as a parameter

Even with the parameter defined, the blocks still refer directly to the specific list
notes (it’s plugged into the “in list” slot of the foreach). Because we want the pro-
cedure to use the list we send in as a parameter, we replace the reference to global
notes with a reference to value list, as demonstrated in Figure 21-8.

Figure 21-8. Now the foreach will use the list sent in

The new version of the procedure is more generic: whatever calls displayList can
now send it any list, and displayList will display it. When you add a parameter to
a procedure, App Inventor automatically puts a corresponding slot in the call block.
So, when the parameter list is added to displayList, the call blocks to display-
List look like Figure 21-9.

298  Chapter 21:  Defining Procedures: Reusing Blocks

Figure 21-9. Calling displayList now requires you to specify which list to display

The name list within the procedure definition is called a formal parameter. The cor-
responding slot within the call block is called an actual parameter. When you call a
procedure from somewhere in the app, you must supply an actual parameter for
each formal parameter of the procedure.

For the Note Taker app, you’d add a reference to the notes list as the actual param-
eter. Figure 21-10 shows how ListPicker.AfterSelection should be modified.

Figure 21-10. Calling the displayList with notes sent as the actual parameter

Now when displayList is called, the list notes is sent over to the procedure and
placed in the parameter list. The program counter proceeds to execute the blocks
in the procedure, referring to the parameter list but really working with the variable
notes.

Because of the parameter, the procedure displayList can now be used with any list,
not just notes. For example, if the Note Taker app was shared among a list of users
and you wanted to display the list, you could call displayList and send it the user
List, as shown in Figure 21-11.

Figure 21-11. The displayList procedure can now be used to display any list, not just notes

Returning Values from a Procedure  299 

Returning Values from a Procedure
There is still one issue with the displayList procedure in terms of its reusability—
can you figure out what it is? As it’s currently written, it can display any list of data,
but it will always display that data in the label NotesLabel. What if you wanted the
list to be displayed in a different user interface object (e.g., you had a different label
for displaying the userList)?

One solution is to reconceptualize the procedure—to change its job from displaying
a list in a particular label to simply returning a text object that can be displayed any-
where. To do this, you’ll use a procedureWithResult block, shown in Figure 21-12,
instead of the procedure block.

Figure 21-12. The procedureWithResult block

You’ll notice that, when compared to the procedure block, the procedure-
WithResult block has an extra slot at the bottom. You place a variable in this slot and
it’s returned to the caller. So, just as the caller can send data to a procedure with a
parameter, a procedure can send data back with a return value.

Figure 21-13 shows the reworked version of the preceding procedure, now using a
procedureWithResult block. Note that because the procedure is now doing a differ-
ent job, its name is changed from displayList to convertListToText.

Figure 21-13. convertListToText returns a text object that the caller can place in any label

300  Chapter 21:  Defining Procedures: Reusing Blocks

In the blocks shown in Figure 21-13, a variable displayText is defined to hold the
text as the procedure iterates through each item of the list. This text variable replaces
the overly specific NotesLabel component that was previously being used. When the
foreach completes, the variable displayText contains the list items, with each item
separated by a newline character, \n (e.g., “item1\nitem2\item3”). This displayText
variable is then plugged into the return value slot.

When a procedureWithResult is defined, its corresponding call blocks look different
than those for a procedure. Compare the call to convertListToText with the call to
the displayList in Figure 21-14.

Figure 21-14. The call on the right returns a value and so must be plugged into something

The difference is that the call convertListToText has a plug on the left. This is
because when the call is executed, the procedure will run through its task and then
return a value to the call block. That return value must be plugged into something.

In this case, the callers to displayList can plug that return value into any label they
want. For the notes example, the three event handlers that need to display a list will
call the procedure as shown in Figure 21-15.

Figure 21-15. Converting the list notes into text and displaying it in NotesLabel

The important point here is that, because the procedure is completely generic and
doesn’t refer to any lists or labels specifically, another part of the app could use
convertListToText to display any list in any label, as exemplified in Figure 21-16.

Figure 21-16. The procedure is no longer tied to a particular Label component

Reusing Blocks Among Apps  301 

Reusing Blocks Among Apps
Reusing code blocks through procedures need not be restricted to a single app.
There are many procedures, like convertListToText, that could be used in just
about any app you create. In practice, organizations and programming communities
build up code libraries of procedures for their domains of interest—for example, a
code library of animation procedures.

Typically, programming languages provide an “import” utility that allows for includ-
ing library code in any app. App Inventor doesn’t yet have such a utility, but one is
being developed. In the meantime, you can create procedures in a special “library
app” and begin new app development by saving a new copy of that app and working
from it.

A Second Example: distanceBetweenPoints
With the displayList (convertListToText) example, we characterized procedure
definition as a way to eliminate redundant code: you start writing code, find re-
dundancies as you go along, and refactor your code to eliminate them. Generally,
however, a software developer or team will design an app from the beginning with
procedures and reusable parts in mind. This sort of planning can save you significant
time as the project progresses.

Consider an app to determine the local hospital closest to one’s current location,
something that would come in very handy in case of an emergency. Here’s a high-
level design description of the app:

When the app launches, find the distance, in miles, between the current location and
the first hospital. Then find it for the second hospital, and so on. When you have the
distances, determine the minimum distance and display the address (and/or a map)
to that location.

From this description, can you determine the procedures this app needs?

Often, the verbs in such a description hint at the procedures you’ll need. Repetition
in your description, as indicated with the “so on,” is another clue. In this case, finding
the distance between two points and determining the minimum of some distances are
two necessary procedures.

Let’s think about the design of the distanceBetweenPoints procedure. When de-
signing a procedure, you need to determine its inputs and outputs: the parameters
the caller will send to the procedure for it to do its job, and the result value the proce-
dure will send back to the caller. In this case, the caller needs to send the latitude and
longitude of both points to the procedure shown in Figure 21-17. The procedure’s
job is to return the distance, in miles.

302  Chapter 21:  Defining Procedures: Reusing Blocks

Caller distanceBetweenPoints

point1Lat
point1Long

Distance

point2Lat
point2Long

Figure 21-17. The caller sends four input parameters and receives a distance

Figure 21-18 shows the procedure we encountered at the start of the chapter, using
a formula for approximating the mileage between two GPS coordinates.

Figure 21-18. distanceBetweenPoints procedure

Figure 21-19 shows blocks that make two calls to the procedure, each of which finds
the distance from the current location to a particular hospital.

For the first call, the actual parameters for point1 are the GPS coordinates for St.
Mary’s Hospital, while point2 uses the current readings from the LocationSensor.
The result value is placed in the variable distanceStMarys. The second call is similar,
but instead uses the data for CPMC Hospital for point1.

The app goes on to compare the two distances returned to determine which hospital
is closest. But if there were more hospitals involved, you’d really need to compare
a list of distances to find the minimum. From what you’ve learned, can you create
a procedure called findMinimum that accepts a list of numbers as a parameter and
returns the index of the minimum?

Summary  303 

Figure 21-19. Two calls to the distanceBetweenPoints procedure

Summary
Programming languages like App Inventor provide a base set of built-in functional-
ity. Procedures let app inventors extend that language with new abstractions. App
Inventor doesn’t provide a block for displaying a list, so you build one. Need a block
for computing the distance between GPS coordinates? You can create your own.

The ability to define higher-level procedure blocks is the key to engineering large,
maintainable software and solving complex problems without being constantly
overwhelmed by all of the details. Procedures let you encapsulate code blocks and
give those blocks a name. While you program the procedure, you focus solely on the
details of those blocks. But in programming the rest of the app, you now have an
abstraction—a name—that you can refer to at a high level.

