
CHAPTER 11

Broadcast Hub

FrontlineSMS is a software tool used in developing
countries to monitor elections, broadcast weather
changes, and connect people who don’t have
access to the Web but do have phones and mobile
connectivity. It is the brainchild of Ken Banks, a pio-
neer in using mobile technology to help people in
need.

The software serves as a hub for SMS text commu-
nication within a group. People send in a special
code to join the group, after which they receive
broadcast messages from the hub. For places with
no Internet access, the broadcast hub can serve as
a vital connection to the outside world.

In this chapter, you’ll create a broadcast hub app that works similarly to FrontlineSMS but
runs on an Android phone. Having the hub itself on a mobile device means that the
administrator can be on the move, something that is especially important in controversial
situations, such as election monitoring and healthcare negotiations.

In this chapter, you’ll build a broadcast hub app for the fictitious FlashMob Dance
Team (FMDT), a group that uses the hub to organize flash mob dances anywhere, any-
time. People will register with the group by texting “joinFMDT” to the hub, and any-
one who is registered can broadcast messages to everyone else in the group.

Your app will process received text messages in the following manner:

1. If the text message is sent from someone not yet in the broadcast list, the app
responds with a text that invites the person to join the broadcast list.

2. If the text message with the special code “joinFMDT” is received, the app adds the
sender to the broadcast list.

3. If the text message is sent from a number already in the broadcast list, the mes-
sage is broadcast to all numbers in the list.

This app is more complicated than the No Text While Driving app in Chapter 4, but
you’ll build it one piece of functionality at a time, starting with the first auto-response
message that invites people to join. By the time you complete this, you’ll have a pretty

http://www.frontlinesms.com

good idea of how to write apps utilizing SMS text as the user interface. Do you want
to write a vote-by-text app such as those used on television talent shows, or the next
great group texting app? You’ll learn how here!

What You’ll Learn
The tutorial covers the following App Inventor concepts, some of which you’re likely
familiar with by now:

• The Texting component for sending texts and processing received texts.

• List variables and dynamic data—in this case, to keep track of the list of phone
numbers.

• The for each block to allow an app to repeat operations on a list of data. In this
case, you’ll use for each to broadcast messages to the list of phone numbers.

• The TinyDB component to store data persistently. This means that if you close the
app and then relaunch it, the list of phone numbers will still be there.

Getting Started
You’ll need a phone with SMS service to test or run this app. You’ll also need to recruit
some friends to send you texts in order to fully test the app.

Connect to the App Inventor website and start a new project. Name it “BroadcastHub”,
and also set the screen’s title to “Broadcast Hub”. Then, connect your device or emula-
tor for live testing.

Designing the Components
Broadcast Hub facilitates communication between mobile phones. Those phones do
not need to have the app installed, or even be smartphones; they’ll communicate by
text with your app. So, in this case, the user interface for your app is just for the group
administrator.

The user interface for the administrator is simple: it displays the current broadcast list;
that is, the list of phone numbers that have registered for the service, and all of the
texts it receives and broadcasts.

To build the interface, add the components listed in Table 11-1.

166 Chapter 11: Broadcast Hub

Table 11-1. User interface components for Broadcast Hub

Component type Palette group What you’ll name it Purpose

Label User Interface Label1 This is the header “Registered Phone Numbers” above the list of
phone numbers.

Label User Interface BroadcastLis

tLabel

Display the phone numbers that are registered.

Label User Interface Label2 This is the header “Activity Log” above the log information.

Label User Interface LogLabel Display a log of the texts received and broadcast.

Texting Social Texting1 Process the texts.

TinyDB User Interface TinyDB1 Store the list of registered phone numbers.

As you add the components, set the following properties:

1. Set the Width of each label to “Fill parent” so that it spans the phone horizontally.

2. Set the FontSize of the header labels (Label1 and Label2) to 18 and check their
FontBold boxes.

3. Set the Height of BroadcastListLabel and LogLabel to 200 pixels. They’ll show
multiple lines.

4. Set the Text property of BroadcastListLabel to “Broadcast List...”.

5. Set the Text property of LogLabel to blank.

6. Set the Text property of Label1 to “Registered Phone Numbers”.

7. Set the Text property of Label2 to “Activity Log”.

Figure 11-1 shows the app layout in the Component Designer.

Designing the Components 167

Figure 11-1. Broadcast Hub in the Components Designer

Adding Behaviors to the Components
The activity for Broadcast Hub is not triggered by the user typing information or click-
ing a button; rather, it’s texts coming in from other phones. To process these texts and
store the phone numbers that sent them in a list, you’ll need the following behaviors:

• When the text message is sent from someone not already in the broadcast list,
the app responds with a text that invites the sender to join.

• When the text message “joinFMDT” is received, register the sender as part of the
broadcast list.

• When the text message is sent from a number already in the broadcast list, the
message is broadcast to all numbers in the list.

Responding to Incoming Texts
You’ll start by creating the first behavior: when you receive a text, send a message
back to the sender inviting her to register by texting “joinFMDT” back to you. You’ll
need the blocks listed in Table 11-2.

Table 11-2. Blocks for adding the functionality to invite people to the group via text

Block type Drawer Purpose

Texting1.MessageReceived Texting1 Triggered when the phone receives a text.

set Texting1.PhoneNumber to Texting1 Set the number for the return text.

get number Drag from
MessageReceived event
handler

The argument of MessageReceived. This is the
phone number of the sender.

168 Chapter 11: Broadcast Hub

Block type Drawer Purpose

set Texting1.Message Texting1 Set the invite message to send.

text (“To join this broadcast list, text
‘joinFMDT’ to this number”)

Text The invite message.

Texting1.SendMessage Texting1 Send it!

How the blocks work
If you completed the No Texting While Driving app in Chapter 4, these blocks should
look familiar. Texting1.MessageReceived is triggered when the phone receives any
text message. Figure 11-2 shows how the blocks within the event handler set the Pho
neNumber and Message of the Texting1 component and then send the message.

Figure 11-2. Sending the invite message back after receiving a text

Test your app You’ll need a second phone to test this behavior; you
don’t want to text yourself, because it could loop forever! If you don’t
have another phone, you can register with Google Voice or a similar
service and send SMS texts from that service to your phone. From the
second phone, send the text “hello” to the phone running the app. The
second phone should then receive a text that invites it to join the
group.

Adding Numbers to the Broadcast List
It’s time to create the blocks for the second behavior: when the text message
“joinFMDT” is received, the sender is added to the broadcast list. First, you’ll need to
define a list variable, BroadcastList, to store the phone numbers that register. From
the Variables drawer, drag out an initialize global block and name it “Broadcast-
List”. Initialize it to an empty list by using a create a list block from the Lists drawer,
as shown in Figure 11-3 (we’ll add the functionality to build this list shortly).

Adding Behaviors to the Components 169

Figure 11-3. The BroadcastList variable for storing the list of registered numbers

Next, modify the Texting1.MessageReceived event handler so that it adds the send-
er’s phone number to the BroadcastList if the message received is “joinFMDT.” You’ll
need an if else block to check the message, and an add item to list block to add
the new number to the list. The full set of blocks you’ll need is listed in Table 11-3.
After you add the number to the list, display the new list in the BroadcastListLabel.

Table 11-3. Blocks for checking a text message and adding the sender to the broadcast list

Block type Drawer Purpose

if else Control Depending on the message received, do different things.

= Math Determine whether messageText is equal to
“joinFMDT.”

get messageText Drag out from MessageReceived
event handler

Plug this into the = block.

text (“joinFMDT”) Text Plug this into the = block.

add items to list Lists Add the sender’s number to BroadcastList.

get global Broadcast

List

Drag out from variable
initialization block.

The list.

get number Drag out from MessageReceived
event handler

Plug this in as an item of add items to list.

set BroadcastListLa

bel.Text to

BroadcastListLabel Display the new list.

global BroadcastList Drag out from variable
initialization block

Plug this in to set the BroadcastListLabel.Text
to block.

set Texting1.Mes

sage to

Texting1 Prepare Texting to send a message back to the sender.

text (“Congrats, you...”) Text Congratulate the sender for joining the group.

How the blocks work

The first row of blocks shown in Figure 11-4 sets Texting1.PhoneNumber to the phone
number of the message that was just received; we know we’re going to respond to
the sender, so this sets that up. The app then asks if the messageText was the special
code, “joinFMDT.” If so, the sender’s phone number is added to the BroadcastList,

170 Chapter 11: Broadcast Hub

and a congratulations message is sent. If the messageText is something other than
“joinFMDT,” the reply message repeats the invitation message. After the if else
block, the reply message is sent (bottom row of the blocks).

Figure 11-4. If the incoming message is “joinFMDT,” add the sender to BroadcastList

Test your app From a phone not running the app, send the text mes-
sage “joinFMDT” to the phone running the app. You should see the
phone number listed in the user interface under “Registered Phone
Numbers.” The “sending” phone should also receive the Congrats
message as a text in reply. Try sending a message other than
“joinFMDT,” as well, to check if the invite message is still sent correctly.

Broadcasting the Messages
Next, you’ll add the behavior so that the app broadcasts received messages to the
numbers in BroadcastList, but only if the message arrives from a number already
stored in that list. This additional complexity will require more control blocks, includ-
ing another if else and a for each. You’ll need an additional if else block to check
if the number is in the list, and a for each block to broadcast the message to each
number in the list. You’ll also need to move the if else blocks from the previous
behavior and socket them into the else part of the new if else. All the additional
blocks you’ll need are listed in Table 11-4.

Table 11-4. Blocks for checking if the sender is in the group already

Block type Drawer Purpose

if else Control Depending on whether the sender is already in the list, do
different things.

is in list? Lists Check to see if something is in a list.

Adding Behaviors to the Components 171

Block type Drawer Purpose

get global Broad

castList

Drag out from variable
initialization block

Plug this into the “list” socket of is in list?

get number Drag out from MessageReceived
event handler

Plug this into the “thing” socket of is in list?

for each Control Repeatedly send out a message to all members in the list.

get global Broad

castList

Drag out from variable
initialization block

Plug this into the “list” socket of for each.

set Texting1.Mes

sage to

Texting1 Set the message.

get messageText Drag out from the
MessageReceived event

The message that was received and will be broadcast.

set Texting1.Phone

Number to

Texting1 Set the phone number.

get item Drag out from for each block Hold the current item of the BroadcastList; it’s a
(phone) number.

How the blocks work

The app has become complex enough that it requires a nested if else block, which
you can see in Figure 11-5. A nested if else block is one that is plugged into the
socket of the if or else part of another, outer if else. In this case, the outer if else
branch checks whether the phone number of the received message is already in the
list. If it is, the message is relayed to everyone in the list. If the number is not in the list,
the nested test is performed: the blocks check if the messageText is equal to
“joinFMDT” and branch one of two ways based on the answer.

172 Chapter 11: Broadcast Hub

Figure 11-5. The blocks check if the sender is already in the group and broadcast the message if so

In general, if and if else blocks can be nested to arbitrary levels, giving you the
power to program increasingly complex behaviors (see Chapter 18 for more informa-
tion on conditional blocks).

The message is broadcast by using a for each (within the outer then clause). The for
each iterates through the BroadcastList and sends the message to each item. As the
for each repeats, each succeeding phone number from the BroadcastList is stored
in item (item is a variable placeholder for the current item being processed in the for
each). The blocks within the for each set Texting.PhoneNumber to the current item
and then send the message. For more information on how for each works, see Chap-
ter 20.

Test your app First, have two different phones register by texting
“joinFMDT” to the phone running the app. Then, text another mes-
sage from one of the phones. Both phones should receive the text
(including the one that sent it).

Beautifying the List Display
The app can now broadcast messages, but the user interface for the app administra-
tor needs some work. First, the list of phone numbers is displayed in an inelegant way.
Specifically, when you place a list variable into a label, it displays the list with spaces
between the items, fitting as much as possible on each line. So, the BroadcastListLa
bel might show the BroadcastList like this:

(+1415111-1111 +1415222-2222 +1415333-3333 +1415444-4444)

To improve this formatting, create a procedure named displayBroadcastList by
using the blocks listed in Table 11-5. This procedure displays the list with each phone

Adding Behaviors to the Components 173

number on a separate line. Be sure to call the procedure from below the add items to
list block so that the updated list is displayed.

Table 11-5. Blocks to clean up the display of phone numbers in your list

Block type Drawer Purpose

to procedure

(“displayBroadcastList”)
Procedures Create the procedure (do not choose to procedure

result).

set BroadcastListLa

bel.Text to

BroadcastListLabel Display the list here.

text (“”) Text Click text and then click Delete to create an empty text
object.

for each Control Iterate through the numbers.

get global BroadcastList Drag out from variable
initialization block

Plug this into the “in list” socket of for each.

set BroadcastListLa

bel.Text to

BroadcastListLabel Modify this with each of the numbers.

join text Text Build a text object from multiple parts.

BroadcastListLabel.Text BroadcastListLabel Add this to the label on each iteration of for each.

text (“\n”) Text Add a newline character so that the next number is on
the next line.

get item Drag out from for each
block.

The current number from the list.

How the blocks work

The for each in displayBroadcastList successively adds a phone number to the end
of the label, as shown in Figure 11-6, placing a newline character (\n) between each
item in order to display each number on a new line.

Figure 11-6. Displaying the phone numbers with a newline character between each

174 Chapter 11: Broadcast Hub

Of course, this displayBroadcastList procedure will not do anything unless you call
it. Place a call to it in the Texting1.MessageReceived event handler, right below the
call to add item to list. The call should replace the blocks that simply set the Broad
castListLabel.Text to BroadcastList. You can find the call displayBroadcastList
block in the Procedures drawer.

Figure 11-7 shows how the relevant blocks within the Texting1.MessageReceived
event handler should look.

Figure 11-7. Calling the displayBroadcastList procedure

For more information on using for each to display a list, see Chapter 20. For more
information about creating and calling procedures, see Chapter 21.

Test your app Restart the app to clear the list and then have at least
two different phones register (again). Do the phone numbers appear
on separate lines?

Logging the Broadcasted Texts
When a text is received and broadcast to the other phones, the app should log that
occurrence so that the administrator can monitor the activity. In the Component
Designer, you added the label LogLabel to the user interface for this purpose. Now,
you’ll code some blocks that change LogLabel each time a new text arrives.

You need to build a text that says something like “message from +1415111-2222 was
broadcast.” The number +1415111-2222 is not fixed data; instead, it is the value of the
argument number that comes with the MessageReceived event. So to build the text,
you’ll concatenate the first part, “message from,” with a get number block and finally
with the last part of the message, the text “broadcast.”

As you’ve done in previous chapters, use join to concatenate the parts by using the
blocks listed in Table 11-6.

Adding Behaviors to the Components 175

Table 11-6. Blocks to build your log of broadcasted messages

Block type Drawer Purpose

set LogLabel.Text

to

LogLabel Display the log here.

join Text Build a text object out of multiple parts.

text (“message from”) Text This is the report message.

get number Drag out from
MessageReceived event
handler

The sender’s phone number.

text (“broadcast\n”) Text Add the last part of “message from 111–2222 broadcast” and
include newline.

LogLabel.Text LogLabel Add a new log to the previous ones.

How the blocks work

After broadcasting the received message to all of the numbers in BroadcastList, the
app now modifies the LogLabel to add a report of the just-broadcasted text, as shown
in Figure 11-8. Note that the message is added to the beginning of the list instead of
the end. This way, the most recent message sent to the group shows up at the top.

Figure 11-8. Adding a new broadcast message to the log

The join block creates new entries of the form:

message from: 111-2222 broadcast

176 Chapter 11: Broadcast Hub

Each time a text is broadcast, the log entry is prepended (added to the front) to the
LogLabel.Text so that the most recent entries will appear on top. The way you orga-
nize the join block determines the ordering of the entries. In this case, the new mes-
sage is added with the top three sockets of join, and LogLabel.Text—which holds
the existing entries—is plugged into the last socket.

The “\n” in the text “broadcast\n” is the newline character that causes each log entry
to display on a separate line:

message from: 1112222 broadcast
message from: 555-6666 broadcast

For more information about using for each to display a list, see Chapter 20.

Storing the BroadcastList in a Database
Your app sort of works, but if you’ve completed some of the earlier tutorials, you’ve
probably guessed that there’s a problem: if the administrator closes the app and
relaunches it, the broadcast list will be lost and everyone will have to register again.
To fix this, you’ll use the TinyDB component to store and retrieve the BroadcastList to
and from a database.

You’ll use a similar scheme to that which you used in the MakeQuiz app (Chapter 10):

• Store the list to the database each time a new item is added.

• When the app launches, load the list from the database into a variable.

Start by coding the blocks listed in Table 11-7 to store the list in the database. With
the TinyDB component, a tag is used to identify the data and distinguish it from other
data stored in the database. In this case, you can tag the data as “broadcastList.” You’ll
add the blocks in the Texting1.MessageReceived event, under the add items to
list block.

Table 11-7. Blocks to store the list with TinyDB

Block type Drawer Purpose

TinyDB1.StoreValue TinyDB1 Store the data in the database.

text (“broadcastList”) Text Plug this into the “tag” slot of StoreValue.

get global BroadcastList Drag out from variable initialization
block

Plug this into the “value” slot of StoreValue.

How the blocks work
When a “joinFMDT” text comes in and the new member’s phone number is added to
the list, TinyDB1.StoreValue is called to store the BroadcastList to the database. The

Adding Behaviors to the Components 177

tag (a text object named broadcastList) is used so that you can later retrieve the
data. Figure 11-9 illustrates that the value that is called by StoreValue is the variable
BroadcastList.

Figure 11-9. Calling TinyDB to store the BroadcastList

Loading the BroadcastList from a Database
Add the blocks listed in Table 11-8 for loading the list back in each time the app
launches.

Table 11-8. Blocks to load the broadcast list back into the app when it launches

Block type Drawer Purpose

Screen1.Initialize Screen1 Triggered when the app launches.

TinyDB1.GetValue TinyDB1 Request the data from the database.

text (“broadcastList”) Text Plug this into the “tag” socket of GetValue.

call displayBroadcastList Procedures After loading data, display it.

When the app begins, the Screen1.Initialize event is triggered, so your blocks will
go in that event handler.

178 Chapter 11: Broadcast Hub

How the blocks work

When the app begins, the Screen1.Initialize event is triggered. The blocks shown
in Figure 11-10 request the data from the database with TinyDB1.GetValue.

Figure 11-10. Loading the BroadcastList from the database

You call TinyDB.GetValue by using the same tag you used to store the list (broadcast
List). In the general case, the previously stored list of phone numbers will be
returned and placed in the variable BroadcastList. But TinyDB.GetValue provides a
socket, valueIfTagNotThere, for specifying what the block should return if there is not
yet data in the database for that tag, as will happen the first time this app is run. In
this case, an empty list is returned.

Test your app You can use live testing for apps that modify the data-
base, but do it carefully. In this case, text the app with another phone
to add numbers to the BroadcastList, and then restart the app. You
can restart in live testing mode by switching to the designer and
modifying some property, even something such as changing the font
of a label. Note that to fully test database apps you need to package
and truly download the app to a phone (choose “Build > App (save
apk to my computer”). After you’ve downloaded your app, use your
other phones to send a text to join the group and then close the app.
If the numbers are still listed when you relaunch the app, the data-
base part is working.

The Complete App: Broadcast Hub
Figure 11-11 illustrates the blocks in the completed Broadcast Hub app.

The Complete App: Broadcast Hub 179

Figure 11-11. The complete Broadcast Hub app

180 Chapter 11: Broadcast Hub

Variations
After you’ve celebrated building such a complex app, you might want to explore
some of the following variations:

• The app broadcasts each message to everyone, including the phone that sent the
message. Modify this so that the message is broadcast to everyone but the
sender.

• Allow client phones to remove themselves from the list by texting “quit” to the
app. You’ll need a remove from list block.

• Give the hub administrator the ability to add and remove numbers from the
broadcast list through the user interface.

• Let the hub administrator specify numbers that should not be allowed into the
list.

• Customize the app so that anyone can join to receive messages, but only the
administrator can broadcast messages.

• Customize the app so that anyone can join to receive messages, but only a fixed
list of phone numbers can broadcast messages to the group.

Summary
Here are some of the concepts we covered in this tutorial:

• Apps can react to events that are not initiated by the app user, such as a text
being received. This means that you can build apps in which your “users” are on a
different phone.

• You can use nested if else and for each blocks to code complex behaviors. For
more information on conditionals and for each iteration, see Chapter 18 and
Chapter 20, respectively.

• You can use the join block to build a text object out of multiple parts.

• You can use TinyDB to store and retrieve data from a database. A general scheme
is to call StoreValue to update the database whenever the data changes and call
GetValue to retrieve the database data when the app starts.

Variations 181

