CHAPTER 13

Amazon at the Bookstore

Suppose that you're browsing books at your favorite
bookstore and want to know how much a book costs on
Amazon.com. With the Amazon at the Bookstore app,
you can scan a book or enter an ISBN, and the app will
tell you the current lowest price of the book at Ama-
zon.com. You can also search for books on a particular
topic.

Amazon at the Bookstore demonstrates how you can use App Inventor to create apps
that talk to web services (aka, application programming interfaces, or APIs). This app
will get data from a web service created by one of the authors of this book. By the end
of this chapter, you'll be able to create your own custom app for talking to Amazon.
The application has a simple user interface with which the user can enter keywords or
a book’s ISBN (international standard book number—a 10- or 13-digit code that
uniquely identifies a book) and then lists the title, ISBN, and lowest price for a new
copy at Amazon. It also uses the BarcodeScanner component so that the user can scan
a book to trigger a search instead of entering text (technically, the scanner just inputs
the book’s ISBN for you).

What You'll Learn

In this app (shown in Figure 13-1), you'll learn:
Amazon in the Bookstore
+ How to use a barcode scanner within an app. —
- How to access a web information source (Ama- Slch oy Keyword | | Search By o | | Sce
zon's API) through the TinyWebDB component. pearch Results
« How to process complex data returned from B oo b ik
. . . ’ ferious Geeks®
that web information source. In particular, you'll Liﬂ.:'iﬂ‘ffn‘.ﬁﬁi’»ﬁ.cm z
learn how to process a list of books in which R S PIRs ole
. Performance”
each book is itself a list of three items (title, SBN-1886698543

. Lowest Amazon Price:$11.99
prlce’ a nd ISBN)' Thie Greatest Baseball Stories Ever Told: Thirty
Junforgettable Tales from the Dlamond®

SBN: 1592280838

owest Amazon Price:$8.50

Cnaching Youth Basehall the Bipken Way*

Figure 13-1. Amazon at the Bookstore
running in the emulator

200 Chapter 13: Amazon at the Bookstore

You'll also be introduced to source code that you can use to create your own web ser-
vice APl with the Python programming language and Google’s App Engine.

What is an API?

Before you start designing your components and programming the app, let's take a
closer look at what an application programmer interface (API) is and how it works. An
APl is like a website, but instead of communicating with humans, it communicates
with other computer programs. APIs are often called “server” programs because they
typically serve information to “client” programs that actually interface with humans—
such as an App Inventor app. If you've ever used a Facebook app on your phone,
you're using a client program that communicates with the Facebook API server app.

In this chapter, you'll create an Android client app that communicates with an Ama-
zon API. Your app will request book and ISBN information from the Amazon API, and
the API will return up-to-date listings to your app. The app will then present the book
data to the user.

The Amazon API you'll use is specially configured for use with App Inventor. We won't
get into the gory details here, but it's useful to know that as a result of this configura-
tion, you can use the TinyWebDB component to communicate with Amazon. The good
news is you already know how to do that! You'll call TinyWebDB.GetValue to request
information and then process the information returned in the TinyWebDB.GotValue
event handler, just as you do when you use a web database. (You can go back to the
MakeQuiz and TakeQuiz apps in Chapter 10 to refresh your memory, if needed.)

Before creating the app, you'll need to understand the Amazon API’s protocol, which
specifies the format for your request and the format of the data returned. Just as dif-
ferent human cultures have different protocols (when you meet someone, do you
shake hands, bow, or nod your head?), computers talking to one another have proto-
cols, as well. The Amazon APl you'll be using here provides a web interface for explor-
ing how the APl works before you start using it. Although the APl is designed to talk
to other computers, this web interface makes it possible for you to see just how that
communication will happen. Following these steps, you can try out what particular
GetValue calls will return via the website, and know that the APl interface will behave
exactly the same when you ask it for data via the TinyWebDB component in App Inven-
tor. Let’s get underway:

1. Open a browser and go to http://aiamazonapi.appspot.com/. You'll see the web-
site shown in Figure 13-2.

http://aiamazonapi.appspot.com/

Whatisan API? 201

App-1 Compli API: A R

This web service is @ proxy to Amazon's Books API and is to be used in conjunction with App In

Android. App Inventor apps can access this service using the TinyWebDB component and settin

. to the URL of this site. The service returns a st of book data. You can explore how this API wos
App Inventar tag of either scarch terms or an isbn in the form “isbn:ooooonac In the box below and clicking

Tag:
T

Figure 13-2. The web interface for the App Inventor Amazon API

. On this web page, you can try the one function you can call with this API: get-
value. Enter a term (e.g., “baseball”) in the Tag field and then click “Get value.” The
web page will display a listing of the top five books returned from Amazon, as
shown in Figure 13-3.

App C API: Books

This web service & & premy 1 Amazon's Beoks APL and is ta b used in conjunction with Agg Inwentar for

Andioid. App Irwaetor 300% Can CCASS Lhis Service wsing tha TinyWebD componant and setting the ServiceURL

to the URL of this site. The service retums & lst of book data, You €an explore how this AP] works by enering a
App Inventon tag of either sesech terms o B isbe in the form “isbinsooonoon I the Box below and clicking Get vilue |

Raturroed a5 valus to TinyWebDB component:
[["The Baseball Cases: Beanbals, Sign Stealig, and Bench- Clearing Brawls: The Unwritton Rules of Americs\'s Pastime™, '$12.08",
‘03754246957, [“The Mental Game of Basetal: A Guide 1o Peak Performance™, "$11.99, '1888658541'], [“Watching Baseball Smarter: A
Professional Fan\'s Guide for Beginners, Semi-experts, and Deeply Serious Geeks™, '$6.99, '0307280322'), [“Youth Baseball Drils™, '$8.9%,
D7 IG056327L. [“Coaching Youth Baseball the Ficken Wav™. '$9.89°, ‘071606782511

Figure 13-3. Making a call to the Amazon API to search for books related to the tag (or keyword)
“baseball”

The value returned is a list of books, each one enclosed in brackets [like this] and
providing the title, cost, and ISBN.

If you look closely, you'll see that each book is in fact represented as a sublist of
another main list. The main list (about baseball) is enclosed in brackets, and each
sublist (or book) is enclosed in its own set of brackets within the main brackets.
So, the return value from this APl is actually a list of lists, with each sublist provid-
ing the information for one book. Let’s look at this a bit more closely. Each left
bracket ([) in the data denotes the beginning of a list. The first left bracket of the
result denotes the beginning of the outer list (the list of books). To its immediate
right is the beginning of the first sublist, the first book, as demonstrated here:

[“The Baseball Codes: Beanballs, Sign Stealing, and Bench-Clearing Brawls: The
Unwritten Rules of America’s Pastime,” ‘$12.98, ‘0375424695']

The sublist has three parts: a title, the lowest current price for the book at Ama-
zon, and the book’s ISBN. When you get this information into your App Inventor
app, you'll be able to access each part by using select list item, with index 1
for the title, index 2 for the price, and index 3 for the ISBN. (To refresh your mem-
ory on working with an index and lists, revisit the MakeQuiz app in Chapter 10.)

202 Chapter 13: Amazon at the Bookstore

3. Instead of searching by keyword, you can search for a book by entering an ISBN.
To perform such a search, you enter a tag in the form “isbn:00000000000,” where
the list of Os represent an actual ISBN number (see Figure 13-4). The double brack-
ets ([[) in the result [[“App Inventor,” ‘$21.93, “1449397484']] denote that a list of
lists is still returned, even though there is only one book. It might seem a bit
strange now, but this will be important when we access the information for our

app.

App Comp API: A Books

This web service is & prexy to Amazon's Books APT and is to b used in eonjunction with Aps [nventar for

Androwd. App Inventor ApEs can Bcoess this Service using the TinyWabDE component sad setting the ServiceURL

to the URL of this site. The service returns a list of book data. You can explore how this APL warks by entering a
App Inventor tag of either search terms or an isbn in the form "isbn:ooosses® in the bax below and dicking Get value :

Tag{m v |
[

Retumned as value to TinyWebDB companant:
[["App Inventar™, ‘$21.97, "1449397404°)]

Figure 13-4. Querying the Amazon API by ISBN instead of keyword

Getting Started

Connect to the App Inventor website and start a new project. Then name it
“AmazonBooks’, and set the screen’s title to “Amazon at the Bookstore”. Then, connect
your device or emulator for live testing.

Designing the Components

The user interface for the Amazon book app is relatively simple: give it a Textbox for
entering keywords or ISBNs, two buttons for starting the two types of searches (key-
word or ISBN), and a third button for letting the user scan a book (we'll get to thatin a
bit). Then, add a heading label and another label for listing the results that the Ama-
zon API returns, and finally two non-visible components: TinyWebDB and a BarcodeS
canner. Check your results against Figure 13-5.

Designing the Components 203

Viewar O — -
A& 500 P B =
Amazon in the Bookstora SearchTextBox Algnment
: i e e8]
1 - BackgroundColor
— — Keyword Searchlution DY'\-':' iy
LEeures vopuori | [EBSS OV] 15BN ;
Search Results

TemiColor

W Biack

WVisitie
™~

Wdth

Autgeans...

Haigr
Automatc...

Non-visible components Rename. Deiete.

TinyWebDB1 BarcodeScannert Modia

Aga

Figure 13-5. The Amazon at the Bookstore user interface shown in the Designer
Table 13-1 lists all the components you'll need to build the Ul shown in Figure 13-5.

Table 13-1. Component list for the Amazon at the Bookstore app

Component type Palette group | What you'll name it Purpose

Textbox User Interface | SearchTextBox The user enters keywords or ISBN here.
HorizontalArrangement | Layout HorizontalArrangement1 | Arrange the buttons in a line.
Button User Interface | KeywordSearchButton Click to search by keyword.

Button User Interface | ISBNButton Click to search by ISBN.

Button User Interface | ScanButton Click to scan an ISBN from a book.
Label User Interface | Label1 The header “Search Results”

Label User Interface | ResultsLabel Where you'll display the results.
TinyWebDB Storage TinyWebDB1 Talk to Amazon.com.
BarcodeScanner Sensors BarcodeScanneril Scan barcodes.

Set the properties of the components in the following way:

1. Set the Hint of the SearchTextBox to “Enter keywords or ISBN".

2. Set the properties of the buttons and labels so that they appear as shown in
Figure 13-5.

204 Chapter 13: Amazon at the Bookstore

3. Set the ServiceURL property of the TinyWebDB component to http://aiamazo-
napi.appspot.com/.

Programming the App’s Behavior
For this app, you'll specify the following behaviors in the Blocks Editor:

Searching by keyword
The user enters some terms and clicks the KeywordSearchButton to invoke an Ama-
zon search. You'll call TinyWebDB1.GetValue to make it happen.

Searching by ISBN
The user enters an ISBN and clicks the ISBNButton. You'll package the prefix “isbn:”
with the number entered and run the Amazon search.

Barcode scanning
The user clicks a button and the scanner is launched. When the user scans an ISBN
from a book, your app will launch a search by ISBN.

Processing the list of books
At first, your app will display the data returned from Amazon in a rudimentary way.
Later, you’ll modify the blocks so that the app extracts the title, price, and ISBN from
each book returned and displays them in an organized way.

Searching by Keyword

When the user clicks the KeywordSearchButton, you want to grab the text from the
SearchTextBox and send it as the tag in your request to the Amazon API. You'll use the
TinyWebDB.GetValue block to request the Amazon search. When the results come
back from Amazon, the TinyWebDB.GotValue event handler will be triggered. For now,
just display the result that is returned directly into the ResultsLabel, as shown in
Figure 13-6. Later, after you see that the data is indeed being retrieved, you can dis-
play the data in a more sophisticated fashion.

Request data from web service sending
user's search term as the tag.

Cotvalue is triggered when
data arrives {from Amazon).
If the data is a list, display it.

Figure 13-6. Send the search request to the API and put results in the ResultsLabel

http://aiamazonapi.appspot.com/
http://aiamazonapi.appspot.com/

Programming the App’s Behavior 205

How the blocks work

When the user clicks the KeywordSearchButton, the TinyWebDB1.GetValue request is
made. The tag sent with the request is the information the user entered in the Search
TextBox. If you completed the MakeQuiz app (Chapter 10), you know that Tiny
WebDB1.GetValue requests are not answered immediately. Instead, when the data
arrives from the API, TinyWebDB1.GotValue is triggered. In GotValue, the blocks check
the value returned to see if it's a list (it won't be if the Amazon APl is offline or there is
no data for the keywords). If it is a list, the data is placed into the ResultsLabel.

Test your app Enter a term in the search box and click Search By Key-
y word. You should get a listing similar to what is shown in Figure 13-7.
/ (It’s not terribly nice-looking, but we’ll deal with that shortly.)

—
A€ 6:37em

dogs

Search By Keyword || Search by 15BN || Scan

L ? I\ 2) -
J5earch Results

{"A Dog Named Slugger” $11.20 0984325654)

"A Dog's Purpose” $4.99 0765326264) (TInside
f a Dog: What Dogs See, Smell, and Know"
510,60 1416582432) ("Good Old Dog; Expert
Judvice for Keeping Your Aging Dog Happy.
Healthy, and Comfortable” $16.29 0547232829)
“What the Dog Saw: And Other Adventures”
§7.90 0316076201))

Figure 13-7. Keyword search result for “dogs”

Searching by ISBN

The code for searching by ISBN is similar, but in this case the Amazon API expects the
tag to be in the form “isbn:xxxxxxxxxxxxx” (this is the protocol the API expects for
searching by ISBN). You don't want to force the user to know this protocol; the user
should just be able to enter the ISBN in the text box and click Search by ISBN, and the
app should add the “isbn:” prefix behind the scenes with make text. Figure 13-8
shows the blocks to do that.

206 Chapter13: Amazon at the Bookstore

S ~ Reguest data from web service sending
it) user's search term as the tag.

do | (2) cail WL EIES -GetValue]
i =

Figure 13-8. The app prefixes “isbn:” to the search so it will look up a particular book

How the blocks work

The join block concatenates the “isbn:” prefix with the information the user has input
in the SearchTextBox and sends the result as the tag to TinyWebDB1.GetValue.

Just as with keyword search, the APl sends back a list result for an ISBN search—in this
case, a list of just the one item whose ISBN matches the user’s input exactly. Because
the TinyWebDB.GotValue event handler is already set up to process a list of books
(even a list with only one item), you won't have to change your event handler to make
this work.

Test your app Enter an ISBN (e.g.,, 9781449397487) in the Search
TextBox and click the ISBNButton. Does the book information
appear?

Don’t Leave Your Users Hanging

When you call a web service (API) with TinyWebDB1.GetValue, there can be a delay
before the data arrives and TinyWebDB1.GotValue is triggered. It is generally a good
idea to let users know the request is being processed to reassure them that the app
hasn’t hung. For this app, you can place a message in the ResultsLabel each time you
make the call to TinyWebDB1.GetValue, as shown in Figure 13-9.

eywordSearchButton -
set - to
Il B TinyWebDB1 ~ Je = 1T
tag

when (GRS ik
- T8 ResultsLabel ~ P Text ~ 814
QNN TinyWebDB1 ~ e TS

tag

Figure 13-9. Adding a message to let the user know what is happening

Programming the App’s Behavior 207

How the blocks work

For both the keyword and ISBN searches, a “Searching Amazon..” message is placed in
ResultsLabel when the data is requested. Note that when GotVvalue is triggered, this
message is overwritten with the actual results from Amazon.

Scanning a Book

Let's face it: typing on a cell phone isn't always the easiest thing, and you tend to
make a mistake here and there. It would certainly be easier (and result in fewer mis-
takes) if a user could just launch your app and scan the barcode of the book. This is
another great built-in Android phone feature that you can tap into easily with App
Inventor.

The function BarcodeScanner.DoScan starts up the scanner. You'll want to call this
when the ScanButton is clicked. The event handler BarcodeScanner.AfterScan is trig-
gered as soon as something has been scanned. It has one argument, result, which
contains the information that was scanned. In this case, you want to initiate an ISBN
search using that result, as shown in Figure 13-10.

Invoke the scanner when user
touches the ScanButton.

ScanBution - |1+ 4

scanner gets a reading.

AftorScan

This is triggered when J

-0 LU ResultsLabel - B Text - RUSEBNEINT L BER] now searching for...

show the scanned 1SBN in
the search box.

Request data from web service sending
scanned ISEN

Figure 13-10. Blocks for initiating an ISBN search after a user scans

How the blocks work

When the user clicks the ScanButton, DoScan launches the scanner. When something
has been scanned, AfterScan is triggered. The argument result holds the result of the
scan—in this case, a book’s ISBN. The user is notified that a request has been made,
the result (the scanned ISBN number) is placed in the SearchTextBox, and Tiny
WebDB1.GetValue is called to initiate the search. Again, the TinyWebDB1.GotValue
event handler will process the book information returned.

208 Chapter13: Amazon at the Bookstore

Test your app Click the ScanButton and scan the barcode of a book.
Does the app display the book information?

Improving the Display

A client app like the one you're creating can do whatever it wants with the data it
receives—you could compare the price information with that of other online stores,
or use the title information to search for similar books from another library. Almost
always, you'll want to get the APl information loaded into variables that you can then
process further. In the TinyWebDB.GotValue event handler you have so far, you just
place all the information returned from Amazon into the ResultsLabel. Instead, let’s
process the data by 1) putting the title, price, and ISBN of each book returned into
separate variables, and 2) displaying those items in an orderly fashion. If you've com-
pleted some of the earlier chapters, you're probably getting the hang of defining vari-
ables and using them in your display, so try building out the variables you think you'll
need and the blocks to display each search result on its own separate line. Then, com-
pare what you've done with Figure 13-11.

@ | TinyWebDB1 - He 1/
; valueFromWebDB
do (o] if | isalist? thing | get EEIC
[T global resultList - L] valve
- R bel ~ M Text ~ (]

~|o| create empty list

Each bookltem in the list is itself a list. The
title, cost, and isbn are the 151, 2nd, and 3rd
iterns of each sublist. Extract them, then
display on separate lines (\n is new line).

Figure 13-11. Extracting the title, cost, and ISBN of each book, and then displaying them on separate
lines

Programming the App’s Behavior 209

How the blocks work

Four variables—resultList, title, cost, and isbn—are defined to hold each piece of
data as it is returned from the API. The result from the API, valueFromWebDB, is placed
into the variable resultList. This app could have processed the argument valueFrom
WebDB directly, but in general, you'll put it in a variable in case you want to process the
data outside the event handler. (Event arguments like valueFromWebDB hold their
value only within the event handler.)

A for each loop is used to iterate through each item of the result. Recall that the data
returned from Amazon is a list of lists, with each sublist representing the information
for a book. So, the placeholder of the for each is renamed bookitem, and it holds the
current book information (a list) on each iteration.

Now we have to deal with the fact that the variable bookitenm is a list—the first item is
the title; the second, the price; and the third, the ISBN. Thus, we use select list item
blocks to extract these items and place them into their respective variables (title,
price, and isbn).

After the data has been organized into variables, you can process it however you'd
like. This app just uses the variables as part of a join block that displays the title, price,
and ISBN on separate lines.

Test your app Try another search and check out how the book infor-
/A mation is displayed. It should look similar to Figure 13-12.

4

RS 47w

dog*{b . e ‘

Search By Keyword || Search by [SBN Scan
L —

L

f5earch Results

A Dog's Purpase”
SBN:0T65326264
JLowest Amazon Price:$4.99

"Inside of a Dog: What Dogs See. Smell, and
pnow”

SBN:1416583432
owest Amazon Price:$8.99

"The Curious Incident of the Dog in the Night-
Time”

ISBN: 1400032717

owest Amazon Price:$3.59

"What the Dog Saw: And Other Adventures”
SBN:0316076201
owest Amazon Price:$9 10

Figure 13-12. The search listing displayed in a more sophisticated fashion

210 Chapter 13: Amazon at the Bookstore

The Complete App: Amazon at the Bookstore

Figure 13-13 shows the final block configuration for Amazon at the Bookstore.

initialize global) to @| create empty list
initialize global) to ‘D"
initialize global () to ‘D’

initialize global Jto | ‘@

@ ScanButton « Fel%
o8 call (ZEIELIESEENNCER -DoScan
—

© .- BarcodeScannerl v By =le)

.GetValue

tag

JCIER [ooking up ISBN at Amazon... i
PN TinyWebDB1 v MeWEITT]

@ join o isbn: |
SearchTextBox v |

|- KeywordSearchButton v Fie [+

SearchTextBox v

is alist? thing get
BT gobal resuitsList + JOMME Y valueF romwebDE +
set v T [-8 valueFromWebDB v |
») for each nlist | get
set CILENTERD to || select listitem list | get
index

-8 global cost v 1) select list item list | get
index
set to | select listitem list

index

Figure 13-13. The complete Amazon at the Bookstore app

Customizing the APl 211

Customizing the API

The APl you connected to, http://aiamazonapi.appspot.com, was created with the pro-
gramming language Python and Google’s App Engine. App Engine lets you create
and deploy websites and services (APIs) that live on Google’s servers. You only pay for
App Engine if your site or APl becomes popular and attracts lots of hits.

The API service used in this tutorial provides only partial access to the full Amazon API
and returns a maximum of five books for any search. If you'd like to provide more flex-
ibility—for example, have it search for items other than books—you can download
the source code for the service from http://appinventorapi.com/amazon/ and custom-
ize it. Such customization does require knowledge of Python programming, so
beware! But, if you've been completing the App Inventor apps in this book, you might
just be ready for the challenge. To get started learning Python, check out the interac-
tive version of the book How to Think Like a Computer Scientist: Learning with Python
and then check out the section on App Inventor API building in Chapter 24 of this
book.

Variations

After you get the app working, you might want to explore some of the following
variations:

« As s, the app hangs if the search doesn'’t return any books (for instance, when the
user enters an invalid ISBN). Modify the blocks so that the app reports when there
are no results.

- Modify the app so that it only displays books under $10.

« Modify the app so that after you scan a book, its lowest Amazon price is spoken
aloud (use the TextToSpeech component discussed in the No Text While Driving
app in Chapter 4).

« Download the http://aiamazonapi.appspot.com APl code and modify it so that it
returns more information. For example, you might have it return the Amazon URL
of each book, display the URL along with each listed book, and let the user click
the URL to open that page. As mentioned earlier, modifying the API requires
Python programming and some knowledge of Google’s App Engine. For more
information, check out Chapter 24.

Summary

Here are some of the concepts we covered with this app:

+ You can access the Web from an app by using TinyWebDB and specially construc-
ted APIs. You set the ServiceURL of the TinyWebDB component to the APl URL and
then call TinyWebDB.GetValue to request the information. The data isn't

http://aiamazonapi.appspot.com
http://appinventorapi.com/amazon/
http://bit.ly/1uJ4Q2j
http://aiamazonapi.appspot.com

212 Chapter 13: Amazon at the Bookstore

immediately returned but can instead be accessed within the TinyWebDB.Got
Value event handler.

+ The BarcodeScanner.DoScan function launches the scan. When the user scans a
barcode, the BarcodeScanner.AfterScan event is triggered and the scanned data
is placed in the argument result.

« In App Inventor, complex data is represented with lists and lists of lists. If you
know the format of the data returned from an API, you can use for each and
select list 1item to extract the separate pieces of information into variables,
and then perform whatever processing or set up the display however youd like
using those variables.

