
CHAPTER 22

Working with Databases

Facebook has a database of every member’s
account information, friends list, and posts. Ama-
zon has a database of just about everything you
can buy. Google has a database of information
about every page in the World Wide Web. Though
not to such a scale, almost every nontrivial app you
can create will interact with a database.

In most programming environments, building an
app that communicates with a database is an
advanced programming technique: you have to set

up a server with database software such as Oracle or MySQL and then write code that
interfaces with that database. In many universities, such database programming isn’t
taught until an upper-level software engineering or database course.

When it comes to databases, App Inventor does the heavy lifting for you (and lots of other
useful things!). The language provides components that reduce database communication
to simple store and get operations. You can create apps that store data directly on the
Android device, and with some setup, you can create apps that share data with other devi-
ces and people by storing it in a centralized database on the Web.

The data stored in variables and component properties is short-term: if the user types
some information in a form and then closes the app before that information has been
stored in a database, the information will be gone when the app is reopened. To store
information persistently, you must store it in a database. The information in databases
is said to be persistent because even when you close the app and reopen it, the data is
still available.

As an example, consider Chapter 4’s No Texting While Driving app, which sends an
auto-response to incoming SMS text messages. The app has a default response that is
sent, but it lets the user enter a custom message to be sent, instead. If the user
changes the custom message to “I’m sleeping; stop bugging me” and then closes the
app, the message should still be “I’m sleeping; stop bugging me,” and not the original
default, when the app is reopened. Thus, the custom message must be stored in a
database, and every time the app is opened, that message must be retrieved from the
database back into the app.

Storing Persistent Data in TinyDB
App Inventor provides two components to facilitate database activity: TinyDB and
TinyWebDB. You use TinyDB to store persistent data directly on the Android device; this
is useful for personal apps for which the user won’t need to share data with another
device or person, as in No Texting While Driving. On the other hand, you use Tiny
WebDB to store data in a web database that can be shared among devices. Being able
to access data from a web database is essential for multiuser games and apps with
which users can enter and share information (like the “MakeQuiz” app in Chapter 10).

The database components are similar, but TinyDB is a bit simpler, so we’ll explore it
first. With TinyDB, you don’t need to set up the database at all; the data is stored in a
database directly on the device and associated with your app.

You transfer data to long-term memory with the TinyDB.StoreValue block, as shown
in Figure 22-1, which comes from the No Texting While Driving app.

Figure 22-1. The TinyDB.StoreValue block stores data to the device’s long-term memory

A tag-value scheme is used for database storage. In Figure 22-1, the data is tagged
with the text “responseMessage.” The value is some text that the user has typed in a
text box for the new custom response—something like, “I’m sleeping; stop bugging
me.”

The tag parameter gives the data you’re storing in the database a name, a way to ref-
erence the information. The value is the data itself. You can think of the tag as a key
that you’ll use later when you want to retrieve the data from the database.

Likewise, you can think of an App Inventor TinyDB database as a table of tag-value
pairs. After the TinyDB1.StoreValue in Figure 22-1 is executed, the device’s database
will have the value listed in Table 22-1.

296 Chapter 22: Working with Databases

Table 22-1. The value stored in the databases

Tag Value

responseMessage I’m sleeping; stop bugging me

An app might store many tag-value pairs for the various data items that you want to
be persistent. The tag is always text, whereas the value can be either a single piece of
information (a text or number) or a list. Each tag has only one value; every time you
store to a tag, it overwrites the existing value.

Retrieving Data from TinyDB
You retrieve data from the database by using the TinyDB.GetValue block. When you
call GetValue, you request particular data by providing a tag. For the No Texting While
Driving app, you can request the custom response by using the same tag as you used
in the StoreValue, “responseMessage.” The call to GetValue returns the data, so you
must plug it into a variable.

Often, you’ll retrieve data from the database when the app opens. App Inventor pro-
vides a special event handler, Screen.Initialize, which is triggered when the app
launches. You need to be careful to consider the case when there is no data yet in the
database (e.g., the first time app is launched). When you call GetValue, you specify a
valueIfTagNotThere parameter. If there is no data, that value will be returned from
the call.

The blocks in Figure 22-2, for the Screen.Initialize of No Texting While Driving app,
are indicative of the way many apps load database data on initialization.

The blocks put the data returned from GetValue into the label ResponseLabel. If there
is data already in the database, it is placed in ResponseLabel. If there is no data for the
given tag, the valueIfTagNotThere value, “I’m driving right now, I’ll text you later” in
this case, is placed in ResponseLabel.

Figure 22-2. When the app launches, you’ll often retrieve database information

Shared Data and TinyWebDB
The TinyDB component stores data in a database located directly on the Android
device. This is appropriate for personal-use apps that don’t need to share data among
users. For instance, many people might install the No Texting While Driving app, but

Retrieving Data from TinyDB 297

there’s no need for the various people using the app to share their custom responses
with others.

Of course, many apps do share data: think of Facebook, Twitter, and multiuser games.
For such data-sharing apps, the database must reside on the Web, not the device, so
that different app users can communicate with it and access its information.

TinyWebDB is the web counterpart to TinyDB. With it, you can write apps that store
data on the Web, using a StoreValue/GetValue protocol similar to that of TinyDB.

By default, the TinyWebDB component stores data by using a web database set up by
the App Inventor team and accessible at http://appinvtinywebdb.appspot.com. That
website contains a database and serves (responds to) web requests for storing and
retrieving data. The site also provides a human-readable web interface that a data-
base administrator (you) can use to examine the data stored there.

This default database is for development only; it is limited in size and accessible to all
App Inventor programmers. Because any App Inventor app can store data there, you
have no assurance that another app won’t overwrite your data!

If you’re just exploring App Inventor or in early the stages of a project, the default web
database is fine. But, if you’re creating an app for real-world deployment, at some
point you’ll need to set up your own web database. Because we’re just exploring right
now, we’ll use the default web database. Later in the chapter, you’ll learn how to cre-
ate your own web database and configure TinyWebDB to use that instead.

In this section, we’ll build a voting app (depicted in Figure 22-3) to illustrate how Tiny
WebDB works. The app will have the following features:

• Users are prompted to enter their email address each time the app loads. That
account name will be used to tag the user’s vote in the database.

• Users can submit a new vote at any time. In this case, their old vote will be
overwritten.

• Users can view the votes from everyone in the group.

• For the sake of simplicity, the issue being voted on is determined outside the app,
such as in a classroom setting in which the teacher announces the issue and asks
everyone to vote electronically. (Note that this example could be extended to
allow users to prompt votes by posting issues to vote on from within the app.)

298 Chapter 22: Working with Databases

http://appinvtinywebdb.appspot.com

Figure 22-3. A Voting app that stores votes to TinyWebDB

Storing Data by Using TinyWebDB
The TinyWebDB.StoreValue block works in the same manner as TinyDB.StoreValue,
except that the data is stored on the Web. For our voting sample, assume that the
user can enter a vote in a text box named VoteTextBox and tap a button named Vote
Button to submit the vote. To store the vote to the web database so that others can
see it, we’ll code the VoteButton.Click event handler like the example in Figure 22-4.

Figure 22-4. When the user enters a vote, it is stored on the web database

Shared Data and TinyWebDB 299

The tag used to identify the data is the user’s email, which has previously been stored
in the variable myEmail (you’ll see this later). The value is whatever the user typed in
VoteTextBox. So, if the user email was joe@zmail.com and his vote was “Pizza,” the
entry would be stored in the database as shown in Table 22-2.

Table 22-2. The tag and value for the vote are recorded in the database

tag value

joe@zmail.com Pizza

The TinyWebDB.StoreValue block sends the tag-value pair over the Web to the data-
base server at http://appinvtinywebdb.appspot.com. As you test your app, you can go
to that URL, click getValue, and enter a tag for which you’ve stored a value. The web-
site will show you the current value for that tag.

Requesting and Processing Data with TinyWebDB
Retrieving data with TinyWebDB is more complicated than with TinyDB. With TinyDB,
the GetValue operation immediately returns a value because your app is communi-
cating with a database directly on the Android device. With TinyWebDB, the app is
requesting data over the Web, which can take time, so Android requires a two-step
scheme for handling it.

With TinyWebDB, a call to GetValue only requests the data; it should really be called
“RequestValue” because it just makes the request to the web database and doesn’t
actually get a value from it right away. To see this more clearly, check out the differ-
ence between the TinyDB.GetValue block and the TinyWebDB.GetValue block shown
in Figure 22-5.

Figure 22-5. The TinyDB.GetValue and TinyDB.GotValue blocks

The TinyDB.GetValue block returns a value right away, and thus a plug appears on its
left side so that the returned value can be placed into a variable or property. The Tiny
WebDB.GetValue block does not return a value immediately, so there is no plug on its
left side.

Instead, when the web database fulfills the request and the data arrives back at the
device, a TinyWebDB.GotValue event is triggered. So, you’ll call TinyWebDB.GetValue in
one place of your app, and then you’ll program the TinyWebDB.GotValue event han-
dler to specify how to handle the data when it actually arrives. An event handler such
as TinyWebDB.GotValue is sometimes called a callback procedure, because some

300 Chapter 22: Working with Databases

mailto:wolber@gmail.com
mailto:wolber@gmail.com
http://appinvtinywebdb.appspot.com

external entity (the web database) is in effect calling your app back after processing
your request. It’s similar to ordering at a busy coffee shop: you place your order and
then wait for the barista to call your name to actually go pick up your drink. In the
meantime, she’s been taking orders from everyone else in line, too (and those people
are all waiting for their names to be called, as well).

GetValue-GotValue in Action
For our sample app, we need to store and retrieve a list of the voters who have the
app, as the app needs to show the votes of all users.

The simplest scheme for retrieving list data is to request the data when the app
launches, in the Screen.Initialize event, as shown in Figure 22-6. (In this example,
we’ll just call the database with the tag for “voterlist.”)

Figure 22-6. Requesting data in the Screen1.Initialize event

When the list of voters arrives from the web database, the TinyWebDB1.GotValue
event handler is triggered. Figure 22-7 shows some blocks for processing the returned
list.

Figure 22-7. Using the GotValue event handler to process the returned list

The valueFromWebDB argument of GotValue holds the data returned from the database
request. Event arguments such as valueFromWebDB have meaning only within the
event handler that invokes them. They are considered local to the event handler, as
you can’t reference them in other event handlers.

Because arguments such as valueFromWebDB aren’t globally accessible, if you need the
information throughout your app, you need to transfer it to a global variable. In the
example, GotValue’s primary job is to transfer the data returned in valueFromWebDB
into the variable voterList, which you’ll use in another event handler.

Shared Data and TinyWebDB 301

The if block in the event handler is also often used in conjunction with GotValue, the
reason being that the database returns an empty text (“”) in valueFromWebDB if there is
no data for the requested tag. This empty return value occurs most commonly when
it’s the first time the app has been used. By asking if the valueFromWebDB is a list,
you’re making sure that there is some data actually returned. If the valueFromWebDB is
the empty text (the if test is false), you don’t put it into voterList.

A More Complex GetValue/GotValue Example
The blocks in Figure 22-7 are a good model for retrieving data in a fairly simplistic app.
In our voting example, however, we need more complicated logic. Specifically:

• The app should prompt the user to type an email address when the program
starts. We can use a Notifier component for this, which pops up a window. (You
can find the Notifier in the “User Interface” palette in the Designer.) When the
user types an email, we’ll store it in a variable.

• Only after determining the user’s email should you call GetValue to retrieve the
voter list. Can you figure out why?

Figure 22-8 shows the blocks for this more complicated scheme for requesting the
database data.

Figure 22-8. In this more complex scheme, GetValue is called after getting the user’s email instead of in
Screen.Initialize

Upon startup (Screen1.Initialize), a Notifier component prompts the user to type
an email address. When the user does so, and the Notifier.AfterTextInput event
handler is triggered, the entry is put into a variable and label, and then GetValue is

302 Chapter 22: Working with Databases

called to get the list of voters. Note that GetValue isn’t called directly in Screen.Initi
alize, because we need the user’s email address to be set first.

So, with these blocks, when the app initializes, it prompts the user to type an email
address and then calls GetValue with a tag of “voterlist.” When the list arrives from the
Web, GotValue is triggered. Here’s what should happen:

• GotValue should check if the data that arrives is non-empty (someone has used
the app and initiated the voter list). If there is data (a voter list), GotValue should
check if our particular user’s email address is already in the voter list. If it’s not, it
should be added to the list, and the updated list should be stored back to the
database.

• If there isn’t yet a voter list in the database, we should create one with the user’s
email address as the only item.

Figure 22-9 shows the blocks for this behavior.

The blocks first ask if a non-empty voter list came back from the database by calling
is a list? If so, the data is put into the variable voterList. Remember, voterList
will have email addresses for everyone who has used this app. However, we don’t
know if this particular user is in the list yet, so we need to check. If the user is not yet
in the list, the user’s email address is added with add item to list, and the updated
list is stored to the web database.

Figure 22-9. Using the GotValue blocks to process the data returned from the database and perform
different actions based on what is returned

The else of the if else block is invoked if a list wasn’t returned from the web data-
base; this happens if nobody has used the app yet. In this case, a new voterList is

Shared Data and TinyWebDB 303

created with the current user’s email address as the first item. This one-item voter list
is then stored to the web database (with the hope that others will join, as well!).

Requesting Data with Various Tags
The voting app thus far manages a list of an app’s users. Each person can see the
email addresses of all the other users, but we haven’t yet created blocks for retrieving
and displaying each user’s vote.

Recall that the VoteButton.Click event submited a vote with a tag-value pair of the
form “email: vote.” If two people had used the app and voted, the pertinent database
entries would look something like Table 22-3.

Table 22-3. The tag-value pairs stored in the database

tag value

voterlist [bill@zmail.com, joe@zmail.com]

bill@zmail.com Hot dogs

joe@zmail.com Pizza

When the user clicks on the ViewVotes button, the app should retrieve all votes from
the database and display them. Suppose that the voter list has already been retrieved
into the variable voterList; we can use a for each to request the vote of each person
in the list, as shown in Figure 22-10.

Figure 22-10. Using a for each block to request the vote of each person in the list

Here we initialize a variable, currentVotesList, to an empty list, because our goal is
to add the up-to-date votes from the database into this list. We then use for each to
call TinyWebDB1.GetValue for every email address in the list, sending the current item
of the for each, renamed “email,” as the tag in the request. Note that the votes won’t
actually be added to currentVotesList until they arrive via a series of GotValue
events.

304 Chapter 22: Working with Databases

Now that we want to display the votes in our app, things get a bit more complicated
yet again. With the requests from ViewVotesButton, TinyWebDB.GotValue will now be
returning data related to all the email tags, as well as the “voterlist” tag used to
retrieve the list of user email addresses. When your app requests more than one item
from the database with different tags, you need to code TinyWebDB.GotValue to han-
dle all possible requests. (You might think that you could try to code multiple Got
Value event handlers, one for each database request—can you figure out why this
won’t work?)

To handle this complexity, the GotValue event handler has a tagFromWebDB argument
that informs you as to which request has just arrived. In this case, if the tag is “voter-
list,” we should continue to process the request as we did previously. If the tag is
something else, we can assume it’s the email of someone in the user list, stemming
from the requests triggered in the ViewVotesButton.Click event handler. When those
requests come in, we want to add the incoming data—the voter and vote—to the
currentVotesList so that we can display it to the user.

Figure 22-11 shows the entire TinyWebDB.GotValue event handler.

Figure 22-11. The TinyWebDB.GotValue event handler

Requesting Data with Various Tags 305

Setting Up a Web Database
As we mentioned earlier in the chapter, the default web database at http://appinvtiny-
webdb.appspot.com is intended for prototyping and testing purposes only. Before you
deploy an app with real users, you need to create a database specifically for your app.

You can create a web database by using the instructions at http://appinventorapi.com/
create-a-web-database-python-2-7. This site was set up by one of the authors (Wolber)
and contains sample code and instructions for setting up App Inventor web databa-
ses and APIs. The instructions point you to some code that you can download and use
with only a minor modification to a configuration file. The code download is the same
as that used for the default web database set up by App Inventor. It runs on Google’s
App Engine, a cloud-computing service that will host your web database on Google’s
servers for free (well, at least until the site receives a certain number of hits). By follow-
ing the instructions, you can have your own private web database that is compliant
with App Inventor’s protocols up and running within minutes and begin creating
web-enabled mobile apps that use it.

When you create and deploy your own custom web database, the App Engine tool
provides you with a URL where your server resides. You can direct your app to use
your custom database server instead of the default http://appinvtiny-
webdb.appspot.com, by changing the ServiceURL property in the TinyWebDB compo-
nent. After that property is changed, all calls to TinyWebDB.StoreValue and Tiny
WebDB.GetValue will interface with the new web service.

Summary
App Inventor makes it easy to store data persistently through its TinyDB and Tiny
WebDB components. Data is always stored as a tag-value pair, with the tag identifying
the data for later retrieval. Use TinyDB when it is appropriate to store data directly on
the device. When data needs to be shared across phones (e.g., for a multiplayer game
or a voting app), you’ll need to use TinyWebDB, instead. TinyWebDB is more complicated
because you need to set up a callback procedure (the GotValue event handler) as well
as a web database service.

306 Chapter 22: Working with Databases

http://appinvtinywebdb.appspot.com
http://appinvtinywebdb.appspot.com
http://appinventorapi.com/create-a-web-database-python-2-7
http://appinventorapi.com/create-a-web-database-python-2-7
http://appinvtinywebdb.appspot.com
http://appinvtinywebdb.appspot.com

