CHAPTER 6
Paris Map Tour

In this chapter, you'll build a tour guide app for a trip to Paris. Creating a fully functioning
map app might seem really complicated, but App Inventor provides two high-level com-
ponents to help: the ActivityStarter, which makes it possible for you to launch another
app from your app, including Google Maps, and the WebViewer, which shows any web
page you want within a subpanel of your app. You'll explore both of these components
and build two different versions of a tour guide.

What You'll Learn

This chapter introduces the following App Inventor components and concepts:

« The Activity Starter component for launching other Android apps from your
app.

« The WebViewer component for showing web pages within your app.

« How to use list variables to store information for your app.

« The ListPicker component to give the user the ability to choose from a list of
locations.

88 Chapter6: Paris Map Tour

+ How to build a URL dynamically to show different maps.

Designing the Components

Create a new project in App Inventor and call it “ParisMapTour”. The user interface for
the app has an Image component with a picture of Paris, a Label component with
some text, a ListPicker component that comes with an associated button, and in
this first version, an ActivityStarter (non-visible) component. You can design the
components using the snapshot in Figure 6-1.

Parks Mag Teur

Figure 6-1. The Paris Map Tour app running in the emulator

You'll need the components listed in Table 6-1 to build this app. Drag each compo-
nent from the Palette into the Viewer and name it as specified.

Table 6-1. Components for the Paris Map Tour

Component type Palette group | What you'll name it | Purpose

Image User Interface | Image1 Show a static image of Paris on screen.

Label User Interface | Label1 Display the text “Discover Paris with your Android!”
ListPicker User Interface | ListPicker1 When clicked, a list of destination choices will appear.
ActivityStarter | Connectivity |ActivityStarter1 |Launchthe Mapsapp when a destination is chosen.

Setting the Properties of ActivityStarter

ActivityStarter is a component with which you can launch any Android app, includ-
ing Google Maps or another one of your own apps. You'll first build ParisMapTour so
that the Maps application is launched to show particular maps based on the user’s
choice. The user can then tap the back button to return to your app and choose a
different destination.

Adding Behaviors to the Components 89

ActivityStarter is a relatively low-level component in that you'll need to set some
properties with information that would be familiar to a Java Android SDK program-
mer, but completely foreign to the other 99.99% of the world. For this app, enter the
properties as specified in Table 6-2, and be careful—they're case-sensitive, meaning
that whether a letter is uppercase or lowercase is important.

Table 6-2. ActivityStarter properties for launching Google Maps

Property Value

Action android.intent.action.VIEW

ActivityClass | com.google.android.maps.MapsActivity

ActivityPackage | com.google.android.apps.maps

In the Blocks Editor, you'll set one more property, Datauri, which lets you provide a
URL to launch a specific map in Google Maps. This property must be set in the Blocks
Editor instead of the Component Designer because it needs to be dynamic: it will
change based on whether the user chooses to visit the Eiffel Tower, the Louvre, or the
Notre Dame Cathedral.

We'll get to the Blocks Editor in just a moment, but there are a couple more details to
take care of before you can move on to programming the behavior for your
components:

1. Download the file metro.jpg to load into your project. Then, set it as the Picture
property of Imagel.

2. The ListPicker component comes with a button; when the user clicks it, the
choices are listed. Set the text of that button by changing the Text property of
ListPicker1 to “Choose Paris Destination”.

Adding Behaviors to the Components

In the Blocks Editor, you'll need to define a list of destinations and two behaviors:

« When the app begins, the app loads the destinations into the ListPicker compo-
nent so that the user can choose one.

« When the user chooses a destination from the ListPicker, the Maps application is
launched and shows a map of that destination. In this first version of the app,
you'll just open Maps and instruct it to run a search for the chosen destination.

90 Chapter6: Paris Map Tour

Creating a List of Destinations

Open the Blocks Editor and create a variable with the list of Paris destinations by
using the blocks listed in Table 6-3.

Table 6-3. Blocks for creating a destinations variable

Block type Drawer | Purpose

initialize global (“Destinations”) | Variables | Create a list of the destinations.

make a list Lists Add the items to the list.
text (“Tour Eiffel”) Text The first destination.
text (“Musée du Louvre”) Text The second destination.
text (“Cathédrale Notre Dame”) Text The third destination.

When you drag the make a list block into your app, it will have only two available
sockets. You can add another one by clicking the dark blue icon it and adding a third
item.

After you've done that, just create the text blocks for each destination and place them
in the three sockets of make a 1ist, as shown in Figure 6-2.

initialize global (-1 (") to | | o makealist

 Musée du Louvro |

Figure 6-2. A list of three items

Letting the User Choose a Destination

The list you just defined does not appear in the user interface—no variables do. You'll
use a ListPicker component to display the list of items for the user to choose from.
You preload the choices into the ListPicker by setting the property Elements to a list.
For this app, you want to set the Elements property for ListPicker to the destina
tions list you just created. Because this only needs to be set once, you'll define this
behavior in the Screen1.Initialize event. You'll need the blocks that are listed in
Table 6-4.

Adding Behaviors to the Components 91

Table 6-4. Blocks for launching the ListPicker when the app starts

Block type Drawer Purpose
Screenl.Initialize Screend This event is triggered when the app starts.
set ListPickerl.Elements to | ListPickerl Set this property to the list that you want to appear.
get global destinations Drag out from variable The list of destinations.
initialization block

How the blocks work

Screenl.Initialize is triggered when the app begins. Figure 6-3 illustrates that the
event handler sets the Elements property of ListPicker so that the three destinations
will appear.

when EECENED -Initialize
- =W ListPicker1 ~ M Elements ~ B -] global Destinations ~ ||
—

Figure 6-3. Initialize the ListPicker with the three choices when the app launches

Test your apps Click Connect and set up live testing with your device

y or emulator. Then, click the button labeled “Choose Paris Destina-

/ tion.” The list picker should appear with the three items. At this point,
nothing should happen when you choose an item.

Opening Maps with a Search URL

Next, you'll program the app so that when the user chooses one of the destinations,
the ActivityStarter launches Google Maps and searches for the selected location.

First, consider the URL http://maps.google.com?q=Paris. When you type this URL into
the address bar of a browser, it shows a map of Paris. The “?” is common to many
URLS; it signifies that a parameter is coming. A parameter is the information the web-
site needs to process the request. In this case, the parameter name is “q’, short for
“query’, and its value is “Paris”. It instructs Google Maps what map to display.

In this app, you'll build a URL dynamically, adding the parameter value based on
which location the user chooses. This way you can show different maps based on the
user’s choices.

When the user chooses an item from the ListPicker component, the List
Picker.AfterPicking event is triggered. In the event handler for AfterPicking, you
need to set the DataUri of the ActivityStarter component so that it knows which

http://maps.google.com?q=Paris

92 Chapter6: Paris Map Tour

map to open, and then you need to launch Google Maps by using ActivityStar
ter.StartActivity. The blocks for this functionality are listed in Table 6-5.

Table 6-5. Blocks to launch Google Maps with the Activity Starter

Block type Drawer Purpose
ListPicker1.AfterPicking ListPicker1 This event is triggered when the user chooses from List
Picker.

set ActivityStarteril.DataUri to |ActivityStarter] | The DataUr1 instructs Maps which map to open on launch.

join Text Build the Datauri from two pieces of text.
text (“http://maps.google.com?q=" Text The first part of the DatauUr i expected by Maps.
ListPicker1.Selection ListPicker1 The item the user chose.

ActivityStarteril.StartActivity |ActivityStarter | Launch Maps.

How the blocks work

When the user chooses from the ListPicker, the chosen item is stored in List
Picker.Selection and the AfterPicking event is triggered. As shown in Figure 6-4,
the DataUr1i property is set to a text object that combines “http://maps.google.com/?
q” with the chosen item. So, if the user chose the first item, “Tour Eiffel,” the Datauri
would be set to “http://maps.google.com/?q= Tour Eiffel.”

Concatenates the Maps URL with the search

terms selected in ListPickerl, e.g.,
“http: //maps.google.com /7g=Tour Eiffel”.

w. A (TR AfterPicking
- RORTN ActivityStarter1 ~ M DataUri ~ ™)

Figure 6-4. Setting the DataURI to launch the selected map

Because you already set the other properties of the ActivityStarter so that it knows
to open Maps, the ActivityStarterl.StartActivity block launches the Maps app
and invokes the search prescribed by the Datauri.

Test your app Restart the app and click the “Choose Paris Destina-

. tion” button again. When you choose one of the destinations, does a

/ map of that destination appear? Can you get back to your app with
the device’s back button?

The Complete App: Map Tour with Activity Starter 93

The Complete App: Map Tour with Activity Starter

Figure 6-5 shows the final block configuration for version 1 of Paris Map Tour.

(7) initiaize global - Yto b1 o Pmakeiist * LETISIC) "

Initialize
Elements v JRella L .1 giobal Destinations |

when QEEEHEaRY AfterPicking
<1 [EEH ActivityStarterl v [DataUri v RUNEEINC

ListPickerl » = Selection v

call StartActivity
.
Figure 6-5. The complete Map Tour app (version 1)

A Virtual Tour with the Web Viewer

The ActivityStarter is an important component because it provides access to any
other app on the device. But, there is another way to build a tour guide that uses a
different component, instead; the WebViewer. WebViewer is a panel you place directly
within your app that behaves like a browser. You can open any web page, including a
Google Map, in the viewer, and you can programmatically change the page that
appears. Unlike with an ActivityStarter, your user doesn’t ever leave your app, so you
don’t have to count on them hitting the back button to get back.

In this second version of the app, you'll use the WebViewer and you'll also spice up the
app so that it opens some zoomed-in and street views of the Paris monuments. You'll
define a second list and use a more complicated scheme to decide which map to
show. To begin, you'll first explore Google Maps to obtain the URLs of some specific
maps. You'll still use the same Parisian landmarks for the destinations, but when the
user chooses one, you'll use the index (the position in the list) of her choice to select
and open a specific zoomed-in or street-view map.

Before going on, you might want to save your project (using Save As) so you have a
copy of the ActivityStarter map tour you've created so far. That way, if you do any-
thing that causes issues in your app, you can always go back to this working version
and try again.

Add the Web Viewer

In the designer, delete the ActivityStarter component. Then, from the User Inter-
face drawer, drag in a WebViewer component and place it below the other compo-
nents. Uncheck the Screen1.Scrollable property so the WebViewer will display pages
correctly.

94

Chapter 6: Paris Map Tour

Finding the URL for Specific Maps

The next step is to open Google Maps on your computer to find the specific maps you
want to launch for each destination:

1.

On your computer, browse to http://maps.google.com.

2. Search for a landmark (e.g., the Eiffel Tower).
3. Zoom in to the level you desire.

4.
5

Choose the type of view you want (e.g., Street View).

. Grab the URL. In the classic version of Maps, you click the Link button near the

top right of the Maps window and copy the URL for the map. In the newer version
of Google Maps you can just grab the URL from the address bar.

Use this scheme to create some cool maps of the Paris monuments and extract the
URLs. Table 6-6 provides some samples if you'd rather use them (the URLs have been
shortened with the bit.ly service).

Table 6-6. Virtual tour URLs for Google Maps

Landmark Maps URL

Tour Eiffel http://bit.ly/1qiEy8B
Musée du Louvre http://bit.ly/1giEVQA
Cathédrale Notre Dame (street view) | http://bit.ly/1qiF1YD

To view any of these maps in a browser, paste the URLs from Table 6-6 into the
address bar.

Defining the URLSs List

You'll need a list named URLs, containing a URL for each of the destinations. Create
this list as shown in Figure 6-6 so that the items correspond to the items in the desti-
nations list (i.e., the first URL should correspond to the first destination, the Eiffel
Tower).

initialize global () to |, (o] makealist = (I: qiEy8B }d

o http://bit.ly/1giIEVQA M

Figure 6-6. Copy and paste the URLs into the text blocks of the URLs list

http://maps.google.com
http://bit.ly/1qiEy8B
http://bit.ly/1qiEVQA
http://bit.ly/1qiF1YD

The Complete App: Map Tour with Activity Starter 95

Modifying the ListPicker.AfterPicking Behavior

In the first version of this app, the ListPicker.AfterPicking behavior set the Datauri
to a combination of “http://maps.google.com/?q=" and the destination the user
chose from the list (e.g., “Tour Eiffel”). In this second version, the AfterPicking behav-
ior must be more sophisticated, because the user is choosing from one list (destina
tions), but the app is choosing from the URLs 1ist for the URL. Specifically, when the
user chooses an item from the ListPicker, you need to know the index of the choice
SO you can use it to select the correct URL from the list. We'll explain more about what
an index is in a moment, but it helps to set up the blocks first to better illustrate the
concept. There are quite a few blocks required for this functionality, all of which are

listed in Table 6-7.

Table 6-7. Blocks for choosing a list item based on the user’s selection

Block type Drawer Purpose
ListPickerl.AfterPicking | ListPickerl This event is triggered when the user chooses an item.
ListPicker1.SelectionIndex |ListPickerl The index (position) of the chosen item.
select list item Lists Select an item from the URLSs list.
get global URLs Drag it from the variable The list of URLs.
initialization
WebViewer.GoToURL WebViewer Load the URL in the viewer to show the map.

How the blocks work

When the user chooses an item from the ListPicker, the AfterPicking event is trig-
gered, as shown in Figure 6-7. The chosen item—for example, “Tour Eiffel”—is in List
Picker.Selection. You used this property in the first version of this app. However,
ListPicker also has a property SelectionIndex, which corresponds to the position of
the chosen destination in the list. So, if “Tour Eiffel” is chosen, the SelectionIndex will
be 1; if “Musée du Louvre” is chosen, it will be 2; and if “Cathédrale Notre Dame de
Paris” is chosen, it will be 3.

when AfterPicking
do | cal .GoToUn

url (' selectlistitem list | get [IELEIVEIEES
i ListPicker1 ~ | Selectionindex

Figure 6-7. Open the selected URL in the Web Viewer

96 Chapter6: Paris Map Tour

You use ListPicker.SelectionIndex to select an item from the URLs list. This works
because the items on the two lists, destinations and URLs, are in sync: the first desti-
nation corresponds to the first URL, the second to the second, and the third to the
third. So, even though the user chooses an item from one list, you can use their choice
(well, the index of their choice) to select the right URL to show.

Test your app On the device, click the button labeled “Choose Paris
Destination.” The list should appear with the three items. Choose one
of the items and see which map appears.

The Complete App: Map Tour (Web Viewer)

Figure 6-8 shows the final block configuration for this second version of Paris Map
Tour.

initialize global (ST E (-0 to o | make alist * *
§ Musée du Louvre ¢
y Cathédrale Notre Dame Ji

initialize global (T;[=)to | |o| make a list

when Initialize
do \fﬁ : Lol :C global Destinations -

when [EEHTCCIIES -AfterPicking

do call .GoToUrl
url | selectlistitem list | get FLELCNVATED
index ListPicker1 «~ |

Figure 6-8. The complete Map Tour App (WebViewer version)

Variations

Here are some suggested variations to try:

« Create a virtual tour of your workplace or school, or for your next vacation
destination.

« Explore ActivityStarter and use it to send an email or launch an app such as
YouTube (see http://bit.ly/1qiFx8Z for help).

http://bit.ly/1qiFx8Z

Summary 97

- Difficult: Create a customizable Virtual Tour app that lets a user create a guide for
a location of her choice by entering the name of each destination along with the
URL of a corresponding map. You'll need to store the data in a TinyWebDB data-
base and create a Virtual Tour app that works with the entered data. For an exam-
ple of how to create a TinyWebDB database, see the MakeQuiz/TakeQuiz app.

Summary

Here are some of the ideas we covered in this chapter:

« You can use list variables to hold data such as map destinations and URLs.

« The ListPicker component lets the user choose from a list of items. The List
Picker’s Elements property holds the list, the Selection property holds the
selected item, the SelectionIndex holds the position of the selected item, and
the AfterPicking event is triggered when the user chooses an item from the list.

« The ActivityStarter component makes it possible for your app to launch other
apps. This chapter demonstrated its use with the Google Maps application, but
you can launch a browser or any other Android app as well, even another one
that you created yourself.

« You can use ListPicker.SelectionIndex to get the position of an item that a
user chooses from a list. You can then use that index to select information from a
different list (whose items are synchronized with the first list). For more informa-
tion on List variables and the ListPicker component, see Chapter 19.

